New 1-m Telescope in the Southern Peruvian Andes

J. Gonzales1, W. Guevara3, G. Ferrero2,3, V. Navarrete1, E. Meza1, P. Becerra5, C. Ferradas-Alva6, M. Huanan7, J. Samanes1,8

1Comisión Nacional de Investigación y Desarrollo Aeronáutico-CONIDA, Lima, Peru. 2Faculty of Astronomic and Geophysical-University Nacional de La Plata UNLP. 3Institute of Astrophysic of the Plata-CONECT-UNLP. 4ESAP/Observatorio del Paris, PSL, CNRS UMR 8109, Universidade Pierre et Marie Curie, Universidade Paris-Diderot. F place Jules Janssen, F-92195 Meudon Cedex. 5Physikalisches Institut, Universität Bern. 6Space Science Center, University of New Hampshire, UNHESP, Universidade Estadual Paulista, Grupo de dinámica Orbital e Planetologia, Guaratinguetá 12516-410, SP, Brazil. 7School of Space and Environment, Beihang University-Beijing, China.

Introduction

CONIDA conducted a search for the best potential astronomical sites in the Peruvian territory based on meteorological information from 45 years of data from the International Satellite Land-Surface Climatology Project (ISLSCP), the Surface meteorology and Solar Energy (SSE) database and continuously monitoring of several meteorological stations. We looked for sites over 4000 meters of altitude with the lowest cloud coverage, humidity and wind velocity, preferably far from active volcanoes, the lowest geological risk and favourable logistic situations (i.e. roads, water and energy proximity). From 2004 to 2008 CONIDA performed missions of astronomical observation in southern Peru in order to characterize the quality of the sky and find the best site for the implementation of an astronomical observatory. The measurements showed that a site in the Southern Peruvian Andes at 4511 meters above the sea level has a favorable atmosphere and weather condition for the operation of an astronomical observatory. In 2015 CONIDA acquired a 1-m Alt-Az Ritchey-Chrétien telescope from APM Telescopes, which is arriving in Peru in 2017.

Location of the Observatory

The site of the future astronomical observatory and where will be installed the 1-m telescope is in the Southern of Peruvian Andes at ~4511 meters above the sea level on the Sasahuine mountain. This place is located near the township of Cambrune in the department of Moquegua. The Figure 1 shows the site where will be located the astronomical observatory. The upper-left figure shows the full map of Peru where in red is the department of Moquegua. The upper right maps shows the department of Moquegua. The bottom figure shows the Sasahuine mountain where the label in red one is the site where will be the observatory.

Preliminary results

The seeing is the astronomical term for the extent of resolution degradation of an image caused by the Earth’s atmospheric turbulence. This degradation in image quality results from fluctuations in the refractive index of air as a function of position and time. In Astronomy it is quantified using the stellar profile, measuring the full width at half maximum (FWHM) which is the angular size of the image of a star with half the peak intensity level. From 2004 to 2008 we took measurements of the first-order atmospheric extinction coefficient k0, mainly in the B, V and R bands on the photometric UVB system and measurements of seeing in the V, R, and I bands (using different instruments and in different locations), at the Sasahuine mountain in the Andes of Moquegua, in Southern Peru. The observational missions were called JANAX missions. JANAX is in vocable Quechea that means world in the sky.

JANAX I and JANAX II were realized in the 2004 and 2005 respectively. The instrument was a Reflex camera of 35 mm and with focal of 1:4, here was used a Trix Kodak film, after that the imagens were digitalized with a scanner to 1200 dpi. From JANAX III to JANAX V the instrument was a 14” Ritchey-Chrétien telescope with camera CCD of 765x510 pixels with UBVRi filters wheel. The next table shows the values of k0 and in comparison with the observatory of the Republic of Argentina and Republican (Mikułak et al. 2003; Minniti D. et al. 1989).

<table>
<thead>
<tr>
<th>Observatory</th>
<th>k0 (arcsec)</th>
<th>Altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bino (Kent)</td>
<td>0.36 ± 0.05</td>
<td>1800</td>
</tr>
<tr>
<td>Cisnero (Argentina)</td>
<td>0.28 ± 0.02</td>
<td>4327</td>
</tr>
<tr>
<td>jana (Moquegua Peru)</td>
<td>0.29 ± 0.11</td>
<td>4327</td>
</tr>
<tr>
<td>jana II (Moquegua-Peru)</td>
<td>0.41 ± 0.11</td>
<td>4330</td>
</tr>
</tbody>
</table>

The Figure 2 shows the results of the average seeing values obtained for visual, blue and red filters at the Sasahuine mountain for 4 missions. For the V filter, the highest average seeing value was 2.4 arcsec, corresponding to 2008, and the minimum value obtained was 0.4 arcsec, corresponding to July 2008. These measurements were carried to 4300 meters above the sea level approximately.

Telescope

In 2015 CONIDA acquired a 1-m Alt-Az Ritchey-Chrétien telescope (Fig. 3) from APM Telescopes through of a project of public investment, and which is arriving in Peru in 2017. Currently the telescope is assembled in Saarbrucken, Germany.

Tentative projects and collaborators

1. Observation of supernovae and their remnants (Dra. Melina Bersten-UNLP)
2. Systematic search of massive binary systems (Dr. Gabriel Ferrero and Dr. Roberto Claudio-CONICET-UNLP)
3. Monitoring and observation of cosmic ray burst (Dr. Alberto Castro-Tirado-IAX)
4. Photometric observation of asteroids (Dr. Jorge Gonzales-CONIDA)

Acknowledgment

The authors are grateful to ACM for the opportunity and to CONIDA for supporting this work.

Main references