

Asimismo, en la tabla a continuación, se muestra los suelos con sus respectivas equivalencias de la capacidad de uso mayor, según las pendientes.

Tabla 4.33 Equivalencia de uso mayor con las unidades edáficas

Consociaciones	Símbolo	Símbolo/ pendiente	Subclase de uso mayor
Huantay	Hu	Hu/B	A3sl(r)
Ocoña	Oc	Oc/A y Oc/B	A3sl(r)
Planchada	Pla	Pla/E	Xse
Vilque	Vq	Vq/A	XsI

Fuente: UEC. 2021.

En las tablas a continuación, se muestran las principales características físico-químicas de las unidades edáficas, así como las características ecogeográficas que representa cada suelo.

Proyecto Central Solar Fotovoltaica Coropuna

Declaración de Impacto Ambiental

Tabla 4.34. Características físico-químicas de los suelos

Suelo	Código	Soil Taxonomy	Pedregosidad superficial	Textura	Salinidad	CaCO3	рН	M.O	Р	К	CIC	Fertilidad
Vilque (Vq)	CA-01	Typic Torrifluvents	Libre	Franco arenosa	fuertemente salina	nulo	neutra	baja	baja	alta	baja	baja
Ocoña (Oc)	CA-02	Typic Torrifluvents	Libre	Arenosa	muy ligeramente salina	nulo	ligeramente alcalina	baja	baja	alta	muy baja	baja
Huantay (Hu)	CA-03	Typic Torrifluvents	Libre	Arenosa	muy ligeramente salina	nulo	ligeramente alcalina	baja	baja	alta	muy baja	baja
Planchada (Pla)	CA-04	Typic Haplotorrands	Libre	Arenosa	muy ligeramente salina	nulo	moderadamente alcalina	baja	baja	alta	muy baja	baja

Fuente: UEC. 2021.

Tabla 4.35. Características ecogeográficas

Suelo	Código	Paisaje	Relieve	Zonas de vida	Material madre	Litología	Vegetación	Drenaje	Permeabilidad
Vilgue (Va)	CA-01	Planicie aluvial	Plano	desierto desecado montano bajo	Aluvial	Depósito aluvial - Arenas, grabas	Sin	Algo	Moderadamente
Vilque (Vq)	CA-01	Platficie aluviai	Pidilo	subtropical	y arcillas	vegetación	Excesivo	rápida	
Ocoña (Oc)	CA-02	Planicie aluvial	Ondulado	desierto desecado montano bajo	Aluvial	Depósito aluvial - Arenas, grabas	Sin	Algo	Muy rápida
Ocoria (Oc)	ia (OC) CA-O2 Planicle aluviai C		Ondulado	subtropical	Aluviai	y arcillas	vegetación	Excesivo	iviuy rapiua
Huantay (Hu)	CA-03	Planicie aluvial	Ondulado	desierto desecado montano bajo	Aluvial	Depósito aluvial - Arenas, grabas	Sin	Algo	Muy rápida
Tidalitay (liu)	CA-03	Fiailicle aluviai	Ondulado	subtropical	Aluviai	y arcillas	vegetación	Excesivo	iviuy rapida
Planchada	CA-04	Colinas	Ondulado	desierto desecado montano bajo	Posidual	Toba Blaistacánica	Sin	Algo	Muy rápida
(Pla)	CA-04	volcánicas	Onduiado	subtropical	Residuai	Residual Toba Pleistocénica		Excesivo	iviuy rapiua

Fuente: UEC. 2021.

f. Descripción de las consociaciones

Consociación Vilque (Vq)

Está conformada por el suelo Vilque (Vq) en una pendiente 4%; que se distribuye dentro de la zona de vida desierto desecado montano bajo subtropical; que se localiza sobre una unidad fisiográfica de planicie aluvial, con un relieve predominantemente plano. En el mapa de suelos se presenta en la fase por pendiente "A".

• Suelo Vilque (Vq) (Typic Torrifluvents)

Se han originado a partir de materiales aluvial; la pedregosidad superficial es considerada como libre y la profundidad efectiva es clasificada como moderadamente profundos. El drenaje natural es algo excesivo y la permeabilidad de acuerdo a su textura es moderadamente rápida. El proceso morfopedológico que se presenta sobre esta unida edáfica es una erosión eólica.

Sus características edáficas están expresadas en un perfil C1-C2-C3, con epipedón ócrico y sin horizonte de diagnóstico. La textura del suelo es franco arenoso a arenosa; su color es pardo muy pálido (10YR 8/2) a pardo muy pálido (10YR 7/3) y no presentan una estructura (masiva y grano simple); la presencia de fragmentos es poco (6-5%), de forma subredondeado-esferoidal.

Sus características químicas están dadas por una reacción neutra (pH 7.32) en superficie a ligeramente alcalina (pH 7.61) en profundidad; fuertemente salina (26.65 dS/m); la capacidad de intercambio catiónico es baja (5.28 meq/100 g de suelo). La saturación de bases es considerada como muy alta (100%). El contenido de la materia orgánica es bajo (0.07%), fósforo disponible es baja (2.5 ppm) y potasio disponible es alta (1964 ppm), la cual determina que la fertilidad natural de la capa arable sea baja.

Las características ecogeográficas, morfológicas y fisicoquímicas de este suelo se muestran en la ficha de evaluación de campo N° CA-01, en el Anexo 4.1.

Consociación Ocoña (Oc)

Está conformada por el suelo Ocoña (Oc) en una pendiente 4%; que se distribuye dentro de la zona de vida desierto desecado montano bajo subtropical; que se localiza sobre una unidad fisiográfica de planicie aluvial, con un relieve predominantemente ondulado. En el mapa de suelos se presenta en la fase por pendiente "A".

Suelo Ocoña (Oc) (Typic Torrifluvents)

Se han originado a partir de materiales aluvial; la pedregosidad superficial es considerada como libre y la profundidad efectiva es clasificada como moderadamente profundos. El drenaje natural es algo excesivo y la permeabilidad de acuerdo a su textura es muy rápida.

Sus características edáficas están expresadas en un perfil C1-C2-C3, con epipedón ócrico y sin horizonte de diagnóstico. La textura del suelo es arenosa; su color es pardo muy pálido (10YR 8/4) a gris pardo claro (10YR 6/2) y no presenta estructura (grano simple); la presencia de fragmentos es muy poco (6-5%), de forma subredondeados-esferoidal.

Sus características químicas están dadas por una reacción ligeramente alcalina (pH 7.69) en superficie a ligeramente alcalina (pH 7.69) en profundidad; muy ligeramente salina (3.94 dS/m); la capacidad de intercambio catiónico es muy baja (4.8 meq/100 g de suelo). La saturación de bases es considerada como muy alta (100%). El contenido de la materia orgánica es bajo (0.03%), fósforo disponible es baja (1.7 ppm) y potasio disponible es alta (1470 ppm), la cual determina que la fertilidad natural de la capa arable sea baja.

Las características ecogeográficas, morfológicas y fisicoquímicas de este suelo se muestran en la ficha de evaluación de campo N° CA-02, en el Anexo 4.1.

Consociación Huantay (Hu)

Está conformada por el suelo Huantay (Hu) en una pendiente 8%; que se distribuye dentro de la zona de vida desierto desecado montano bajo subtropical; que se localiza sobre una unidad fisiográfica de planicie aluvial, con un relieve predominantemente ondulado. Se encuentra cubierto por una vegetación de sin vegetación. En el mapa de suelos se presenta en la fase por pendiente "B".

Suelo Huantay (Hu) (Typic Torrifluvents)

Se han originado a partir de materiales aluvial; la pedregosidad superficial es considerada como libre y la profundidad efectiva es clasificada como moderadamente profundos. El drenaje natural es algo excesivo y la permeabilidad de acuerdo a su textura es muy rápida. El proceso morfopedológico que se presenta sobre esta unida edáfica es una erosión eólica.

Sus características edáficas están expresadas en un perfil C1-C2-C3-0, con epipedón ócrico y sin horizonte de diagnóstico. La textura del suelo es arenosa a arena franca; su color es amarillo pálido (2,5Y 8/4) a marrón gris (2,5Y 6/2) y no presenta estructura (grano simple); la presencia de fragmentos es muy poco (6-5%), de forma subredondeado-esferoidal.

Sus características químicas están dadas por una reacción ligeramente alcalina (pH 7,69) en superficie a ligeramente alcalina (pH 7,57) en profundidad; muy ligeramente salina (3,28 dS/m);

la capacidad de intercambio catiónico es muy baja (3,52 meq/100 g de suelo). La saturación de bases es considerada como muy alta (100%). El contenido de la materia orgánica es bajo (0,03%), fósforo disponible es baja (1,5 ppm) y potasio disponible es alta (1206 ppm), la cual determina que la fertilidad natural de la capa arable sea baja.

Las características ecogeográficas, morfológicas y fisicoquímicas de este suelo se muestran en la ficha de evaluación de campo N° CA-03, en el Anexo 4.1.

Consociación Planchada (Pla)

Está conformada por el suelo Planchada (Pla) en una pendiente 50%; que se distribuye dentro de la zona de vida desierto desecado montano bajo subtropical; que se localiza sobre una unidad fisiográfica de quebradas, con un relieve predominantemente ondulado. En el mapa de suelos se presenta en la fase por pendiente "E".

• Suelo Planchada (Pla) (Typic Haplotorrands)

Se han originado a partir de materiales residual; la pedregosidad superficial es considerada como libre y la profundidad efectiva es clasificada como moderadamente profundos. El drenaje natural es algo excesivo y la permeabilidad de acuerdo a su textura es muy rápida. El proceso morfopedológico que se presenta sobre esta unida edáfica es una erosión eólica.

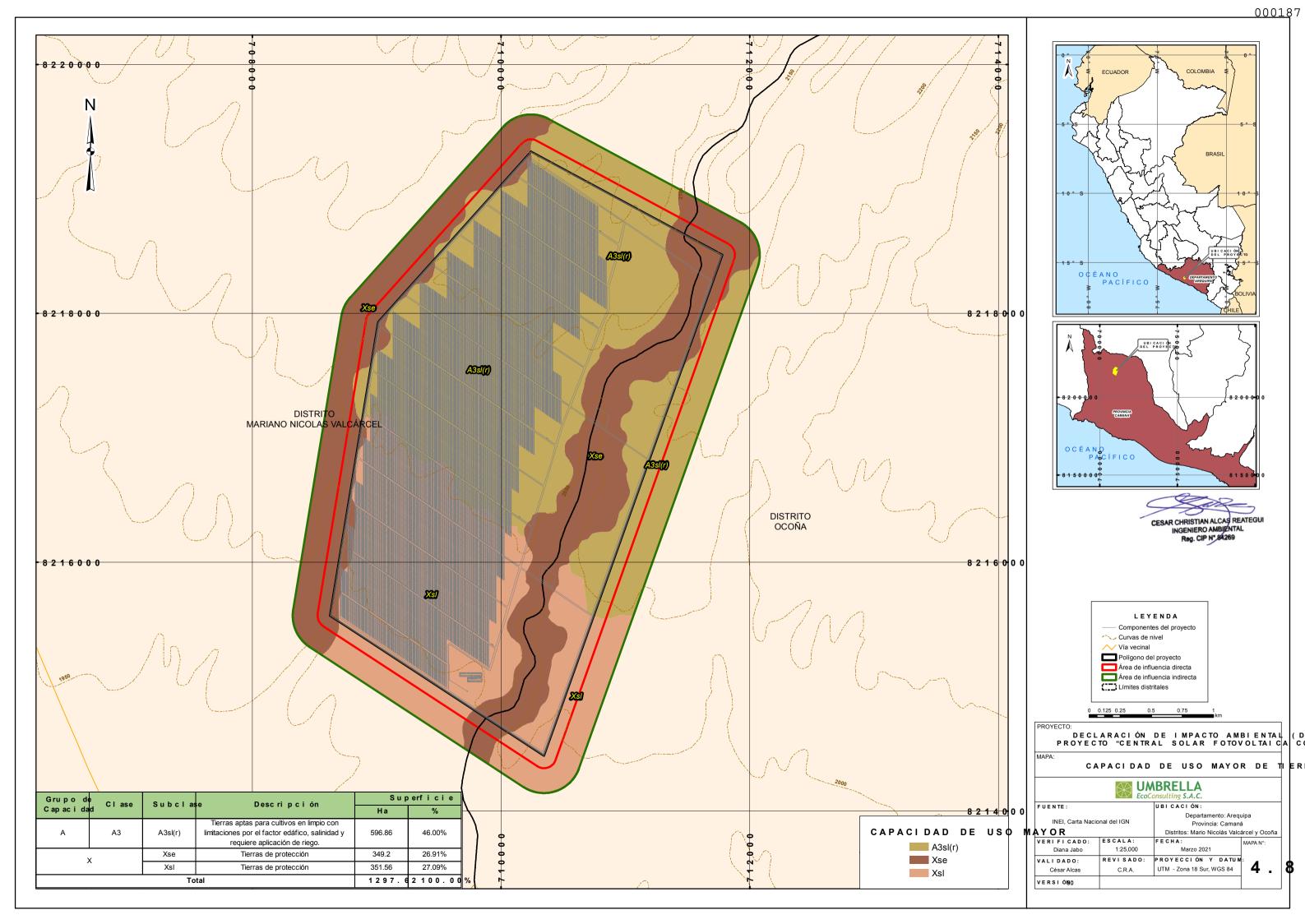
Sus características edáficas están expresadas en un perfil C1-C2-C3, con epipedón ócrico y petrogypsico. La textura del suelo es arenosa; su color parado muy pálido (10YR 8/6) a pardo muy pálido (10YR 8/3) y no presenta estructura (grano simple y masiva); la presencia de fragmentos es poco (6-5%), del tamaño de grava media (0,6-2 cm) y de forma subangular-esferoidal.

Sus características químicas están dadas por una reacción moderadamente alcalina (pH 7,94) en superficie a ligeramente alcalina (pH 7,69) en profundidad; muy ligeramente salina (3,11 dS/m); la capacidad de intercambio catiónico es muy baja (3,2 meq/100 g de suelo). La saturación de bases es considerada como muy alta (100%). El contenido de la materia orgánica es bajo (0,03%), fósforo disponible es baja (2,3 ppm) y potasio disponible es alta (720 ppm), la cual determina que la fertilidad natural de la capa arable sea baja.

Las características ecogeográficas, morfológicas y fisicoquímicas de este suelo se muestran en la ficha de evaluación de campo N° CA-04, en el Anexo 4.1.

D. Capacidad de uso mayor de las tierras

a. Generalidades


El sistema de clasificación de tierras según su capacidad de uso mayor es un ordenamiento sistémico, práctico e interpretativo, de gran base ecológica, que agrupa a los diferentes suelos con el fin de mostrar sus usos, problemas o limitaciones, necesidades y prácticas de manejo adecuado. Esta clasificación proporciona un sistema comprensible, claro, de gran valor y utilidad en los planes de desarrollo agrícola, y de acuerdo a las normas de conservación de los suelos. Para la interpretación práctica del potencial de tierras se ha utilizado el Reglamento de Clasificación de Tierras del Perú (D.S. Nº 0017-2009-AG).

Por otro lado, en el área de estudio se reconoce que las tierras se clasifican en dos grupos de capacidad de uso mayor: Clases de tierras aptas para cultivos en limpio (A) y tierras de protección (X). En el Mapa 4.8 y en la tabla a continuación, se muestra la superficie de las tierras según su capacidad de uso mayor.

Tabla 4.36. Superficie de las tierras según su capacidad de uso mayor

Grupo de	Grupo de Clase		Descripción	Superficie		
Capacidad	Clase	Subclase	Descripcion	На	%	
А	А3	A3sl(r)	Tierras aptas para cultivos en limpio con limitaciones por el factor edáfico, salinidad y requiere aplicación de riego.	596.86	46.00%	
X	.,		Tierras de protección	349.20	26.91%	
^		Xsl Tierras de protección		351.56	27.09%	
Total					100.00%	

Fuente: UEC. 2021.

b. Descripción de las unidades de capacidad de uso mayor

Clase de Calidad Agrícola Baja (A3)

Dentro de esta clase se ha determinado la subclase A3sl(r).

• Subclase A3sl(r)

Comprende tierra para cultivos en limpio de calidad agrológica baja, cuyas fuertes limitaciones están referidas al factor edáfico, salinidad y a la falta de agua, además debido a que es una zona árida requieren la aplicación de riego continuo y cultivos adecuados para la zona, para poder permitir el desarrollo de actividad agrícola.

Se incluye en esta subclase a la unidad edáfica Ocoña y Huantay, que se presenta en pendientes planas ligeramente a moderadamente inclinada (0-8%), dentro de la zona de vida de desierto desecado montano bajo subtropical tropical.

- <u>Limitaciones de uso</u>

Las limitaciones más importantes de estas tierras, están referidas principalmente a los factores: de salinidad, además del factor climático, por la por la escasa disponibilidad de agua de riego, principalmente en la época de estiaje por la falta de agua en el ámbito de estas tierras y por la escasa disponibilidad de agua de riego en los valles vecinos durante gran parte del año, que impide dotar con riego continuo. Edáfica, por presentar una baja fertilidad natural, presencia de sales, textura mayormente gruesa, y presencia en algunos sectores de gravas, guijarros y gravillas dentro y sobre el perfil del suelo en proporciones variables.

<u>Lineamientos de uso y manejo</u>

Para superar la falta de agua de riego en estas tierra y ante la escasa disponibilidad de este recurso en los valles vecinos, para poder dotar con agua y hacer posible su explotación en gran parte de estas tierra, será solo posible mediante la aplicación de riego tecnificado (goteo, aspersión o de membranas), que permita aprovechar eficientemente el escaso excedente de agua en los ríos de los valles vecinos. Igualmente, con el fin de minimizar esta limitación se deberá seleccionar aquellos cultivos tolerantes o poco exigentes de agua, de bajo uso consuntivo.

- Recomendaciones de especies:

De acuerdo a las condiciones climáticas similares al de las subclase anterior, teóricamente se puede recomendar la misma amplia gama de cultivos anuales, sin embargo por las limitaciones de disponibilidad de agua de riego en cantidad adecuada y oportuna, se recomienda el uso de aquellas variedades o especies de cultivos alimenticios o industriales de alta rentabilidad económica y de bajo uso consuntivos, tales como: espárrago, tomate, páprika y otros cultivos que se consideren apropiados para las zona.

Tierra de protección

• Unidad Xse

Se encuentra conformada por aquellos suelos mayormente de topografía empinada, que comprende suelos esqueléticos, suelos muy superficiales, áreas con severos problemas de erosión hídrica como cárcavas, surcos. "bad lands"; suelos con abundante gravosidad, pedregosidad, rocosidad y/o la presencia de un contacto lítico dentro y/o sobre el perfil, que limitan la profundidad efectiva y el volumen útil del suelo. Se incluye en esta subclase a la unidad edáfica Planchada.

Unidad Xsl

Las limitaciones de mayor importancia están referidas a la salinidad, debido a altos contenidos de sales en los suelos. Para poder utilizar en forma racional estas tierras y evitar su deterioro se recomienda evitar la aplicación de agroquímicos de bajo residual salino; la roturación de capas cementadas para facilitar un lavado de sales se podría tomar como buena alternativa para mejorar la aptitud de estas tierras. Se incluye en esta subclase a la unidad edáfica Vilque.

E. Uso actual de la tierra

Generalidades

La evaluación de uso actual de la tierra comprende la diferenciación de sus diversas formas de utilización y su representación cartográfica en un mapa a escala 1:25 000, utilizándose como referencia el Sistema de Clasificación de Uso Actual de la Tierra propuesto por la Unión Geográfica Internacional (UGI).

El objetivo de este estudio es identificar, describir y representar cartográficamente la conformación y distribución espacial de los principales usos de las tierras en el ámbito de indirecta del proyecto.

b. Clasificación y descripción de uso actual de la tierra

Las categorías identificadas en el área de estudio, de acuerdo a la clasificación de la UGI, se detallan en la siguiente tabla (Ver Mapa 4.9)

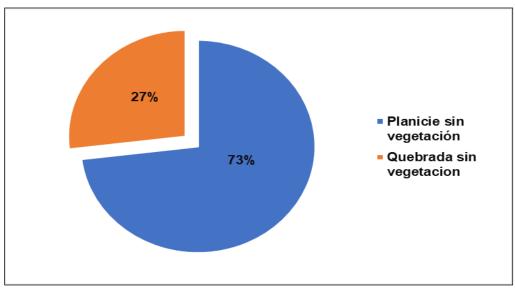


Tabla 4.37. Categorías de uso actual de la tierra

Unidad	Símbolo	Superficie		
Omuau	Simbolo	На	%	
Terreno improductivos				
Planicie sin vegetación	Psv	948.42	73.09%	
Quebrada sin vegetación	Qsv	349.20	26.91%	
Total		1297.62	100.00%	

Fuente: UEC. 2021.

Gráfico 4.6. Porcentaje de superficie según las categorías de UAT

Fuente: UEC. 2021.

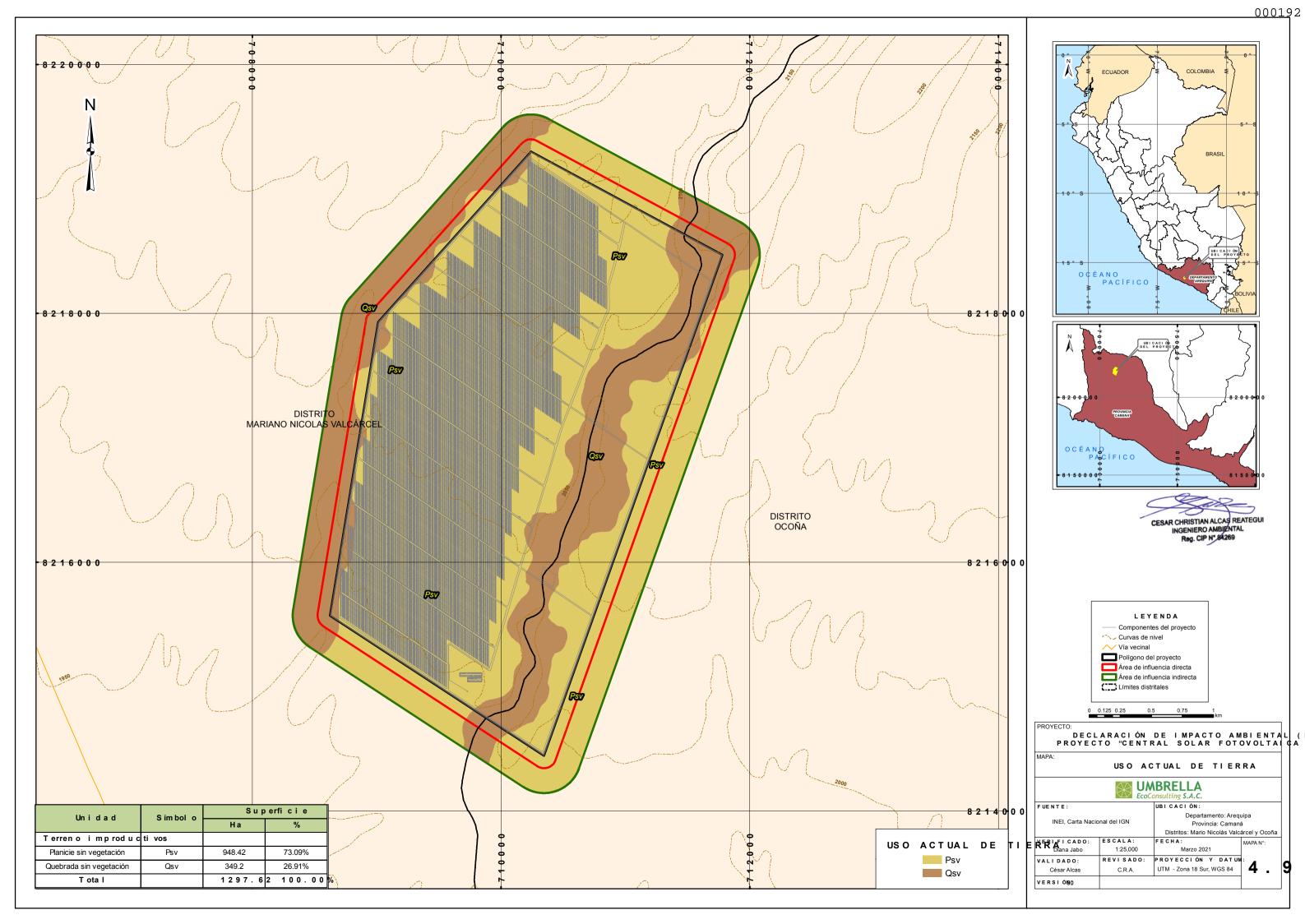
> Terrenos improductivos

• Planicie sin vegetación

Comprende a todas aquellas tierras que carecen de vegetación o tienen una vegetación muy escasa que no hace posible un beneficio alguno, entre las cuales se tiene a las planicies desérticas, los cuales incluyen a las áreas planas y piedemontes, pedimentos, así como a las zonas de planicies onduladas a lomadas.

Foto 4.3. Vista de planicie sin vegetación

Fuente: UEC, 2021.


• Quebrada sin vegetación

Unidad cartográfica donde la vegetación está por debajo del 2% de cobertura, en los cauces de las quebradas, debidos principalmente a la falta del recurso hídrico.

Foto 4.4. Vista de quebrada sin vegetación

Fuente: UEC, 2021.

F. Calidad de los suelos

La calidad de un suelo se define como la capacidad para sustentar una cobertura vegetal, la cual puede verse afectada por los impactos adversos sobre el suelo a partir de la ejecución de un proyecto; esta puede asociarse con la entrada de sustancias, y que a partir de ciertas concentraciones pueden considerarse como no deseables. En áreas no intervenidas, cuando se hace un estudio para determinar el contenido de metales pesados, los resultados encontrados indican un contenido natural, proveniente del material de origen del suelo, dado que no hay intervención del hombre.

a. Metodología

> Toma de muestras

Consistió en la toma de muestra del primer horizonte, de un espesor de 10 cm de profundidad, cuyo tipo de muestreo fue compuesto.

Métodos de referencia

Los métodos de referencia utilizados por el laboratorio Servicios Analíticos Generales S.A.C., para la determinación de los parámetros orgánicos e inorgánicos, se muestran en la siguiente tabla:

Tabla 4.38. Métodos de ensayos

Ensayo	Método	L.D.M.	Unidades
Cianuro libre	EPA Method 9013-A Rev. 2 (2014) // SMEWW-APHA-AWWA-WEF Part 4500-CN -F, 23rd Ed. 2017. Cyanide Extraction procedure for Solids and oils // Cyanide. Selective Electrode Method		mg/kg
Cromo VI	EPA 3060A:1996: Alkaline Digestion for Hexavalent Chromium / EPA 7196A:1992: Chromium, Hexavalent (Colorimetric)	0.13(a)	mg/kg
Total Petroleum Hydrocarbons (TPH): Fracción de Hidrocarburos F1 (C6- C10)	EPA 8015 C. Nonhalogenated Organics by Gas Chromatography. Rev 3 / February 2007		mg/kg
Hidrocarburos totales de petróleo (TPH): Fracción de Hidrocarburos F2 (C10-C28)	EPA 8015 C, Rev 3. Nonhalogenated Organics by Gas Chromatography. 2007		mg/kg
Hidrocarburos totales de petróleo (TPH): Fracción de Hidrocarburos F3 (C28-C40)	EPA 8015 C, Rev 3. Nonhalogenated Organics by Gas Chromatography. 2007		mg/kg
Metales: (Aluminio, Antimonio, Arsénico, Bario, Boro, Berilio, Cadmio, Calcio, Cerio, Cromo, Cobalto, Cobre, Hierro, Plomo, Litio, Magnesio, Manganeso, Mercurio, Molibdeno, Niquel, Fósforo, Potasio, Selenio,	EPA 3050-B (1996) / Method 200.7 Rev. 4.4 EMMC Version (1994). Acid Digestion of Sediments, Sludges, and Soils / Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry		mg/kg

Ensayo	Método	L.D.M.	Unidades
Plata, Sodio, Estroncio, Talio, Estaño, titanio, Vanadio, Zinc).			
Hidrocarburos Aromáticos policíclicos (PAH)	EPA Method 8270E, Rev 06. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). 2018		ug/kg
ВТЕХ	Method 8260D – Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Revision 4, June 2018		ug/kg
Bifenilos policlorados - PCB	EPA Method 8270E: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Revision 6, June 2018		ug/kg
Volatile Organic Compounds (VOC´s)	Method 8260D – Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Revision 4, June 2018.		ug/kg

Fuente: SAG S.A.C., 2021.

Nota:

L.D.M.: Límite de detección del método.

(a) Expresado como límite de detección del método.

Criterios establecidos para el análisis de los resultados

Los resultados obtenidos en el laboratorio fueron comparados con el estándar de calidad para uso agrícola que permitirá dar una primera aproximación de la calidad del suelo en cuanto al contenido de metales pesados y compuestos orgánicos.

b. Estaciones de muestreo

En la tabla a continuación, se muestran las coordenadas centrales de las estaciones de muestreo; y la ubicación se muestra en el Mapa de ubicación de calidad de suelos (Mapa 4.10). En el Anexo 4.3. se muestra la Ficha de muestreo de calidad de suelos.

Tabla 4.39. Ubicación de las estaciones de muestreo

Código	Coordenadas UTM (Datum WGS 84-18S)		Altitud m.s.n.m.	Zona de vida
	Este	Norte		
CS-01	709803	8217903	2100	desierto desecado montano bajo subtropical
CS-02	709273	8215785	2025	desierto desecado montano bajo subtropical
CS-03	709904	8214969	2010	desierto desecado montano bajo subtropical
CS-04	710558	8216234	2044	desierto desecado montano bajo subtropical

Fuente: UEC. 2021.

En la siguiente tabla se indican los criterios que se han usado para la determinación y ubicación de las estaciones de muestreo de calidad de suelos, los cuales están en función a los principales componentes del proyecto que podrían impactar la calidad del suelo.

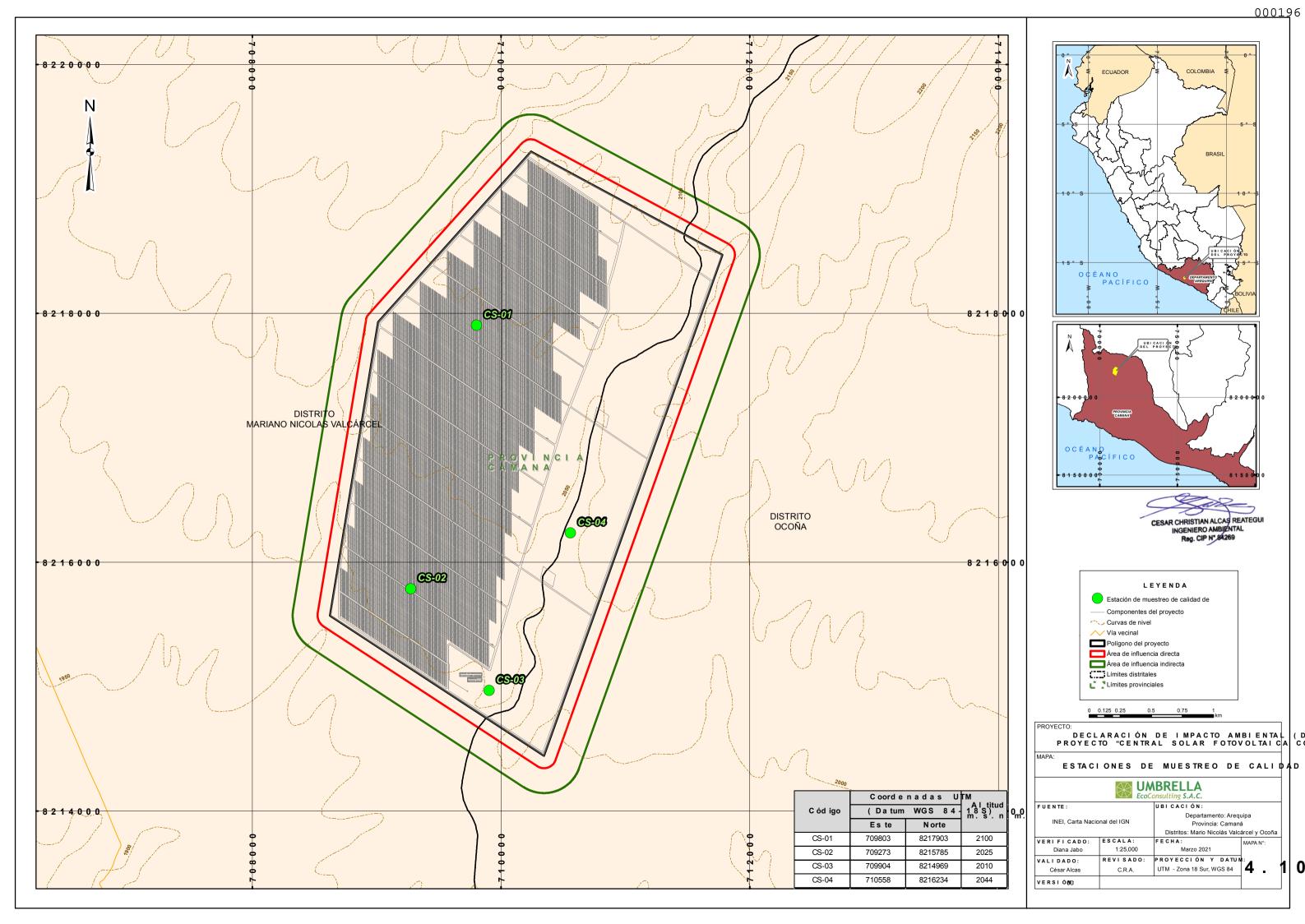


Tabla 4.40. Criterios para la ubicación de las estaciones de muestreo de calidad de suelo

Evaluación	Criterios
Calidad de suelos	La ubicación de los puntos de muestreo se realizó de acuerdo con la metodología de muestreo rígido – a juicio de experto y en función a los sectores y los principales componentes del proyecto y los siguientes criterios: Unidad litológica representativa Unidad de vegetación Accesibilidad Componentes principales del estudio. El muestreo de calidad de suelos es considerado de nivel de fondo (línea base), al ser un proyecto nuevo.

Fuente: UEC, 2021

c. Estándares de comparación

> Componentes inorgánicos

Para comparar la concentración de metales del suelo se utilizó los Estándares de Calidad Ambiental (ECA) para suelos, D.S. N° 011-2017-MINAM (MINAM, 2017), tal como se muestra en la tabla a continuación:

Tabla 4.41. Estándar de calidad del suelo

Elemento	ECA Uso de suelo Agrícola	Estándar
Arsénico	50	D.S11-2017-MINAM
Bario Total	750	D.S11-2017-MINAM
Cadmio	1.4	D.S11-2017-MINAM
Cromo Total	**	D.S11-2017-MINAM
Cromo VI	0.4	D.S11-2017-MINAM
Mercurio	6.6	D.S11-2017-MINAM
Plomo	70	D.S11-2017-MINAM
Cianuro libre	0.9	D.S11-2017-MINAM

^{**:} Este símbolo dentro de la tabla significa que el parámetro no aplica para el uso de suelo agrícola. Fuente: Estándares de Calidad Ambiental (ECA) para Suelos D.S.-11-2017-MINAM (Perú).

Parámetros orgánicos

Para comparar el contenido de los compuestos orgánicos nocivos del suelo se utilizó los Estándares de Calidad Ambiental (ECA) para suelos, D.S. N° 011-2017-MINAM (MINAM, 2017), tal como se muestra en la siguiente tabla.

Tabla 4.42. Estándar de calidad del suelo en compuestos orgánicos

Elemento	Unidad Límite de detección	ECA Suelo Agrícola				
Parámetros Orgánicos						
Hidrocarburos aromáticos volátiles						
Benceno	(mg/kg)	0.03				
Tolueno	(mg/kg)	0.37				
Etilbenceno	(mg/kg)	0.082				
Xilenos	(mg/kg)	11				
	Hidrocarburos poliaromáticos					
Naftaleno	(mg/kg)	0.1				
Benzo(a) pireno	(mg/kg)	0.1				
Hidrocarburos de Petróleo						
racción de hidrocarburos F1 (C6-C10)	(mg/kg)	200				

Elemento	Unidad Límite de detección	ECA Suelo Agrícola
Fracción de hidrocarburos F2 (>C10- C28)	(mg/kg)	1200
Fracción de hidrocarburos F3 (>C28- C40)	(mg/kg)	3000
	Compuestos Organoclorados	
Bifenilos policlorados - PCB	(mg/kg)	0.5
Tetracloroetileno	(mg/kg)	0.1
Tricloroetileno	(mg/kg)	0.01

Fuente: *ECA: Estándares de Calidad Ambiental para Suelos D.S. N°011-2017-MINAM (Perú).

d. Resultados

Parámetros Inorgánicos

La concentración de los parámetros inorgánicos evaluados en los puntos de muestreo indica que todos los elementos están por debajo del ECA suelos establecidos en el D.S. No. 011-2017-MINAM.

Asimismo, en el Anexo 4.4 se presenta los informes de ensayo con los resultados de los puntos de muestreo de calidad de suelos; y en las siguientes tablas se indica los resultados comparados con los parámetros evaluados.

Parámetros Orgánicos

La concentración de los parámetros orgánicos evaluados en los puntos de muestreo indica que todos los elementos están por debajo del ECA suelos establecidos D.S. No. 011-2017-MINAM.

Asimismo, en el Anexo 4.4 se presenta los informes de ensayo con los resultados de los puntos de muestreo de calidad de suelos, y en las siguientes tablas se detalla los resultados comparados con los parámetros orgánicos evaluados.

 Tabla 4.43.
 Resultados de parámetros inorgánicos

ECA - Uso del Suelo Agrícola (DS-011-2017-MINAM - mg/kg PS)							750	1.4	**	0.4	6.6	70	0.9
Estación de Muestreo	Fecha muestreo	Prof. cm	Coordenadas UTM (Datum WGS 84-18S)		Altitud (m.s.n.m.)	Arsénico	Bario	Cadmio	Cromo Total	Cromo VI	Mercurio	Plomo	Cianuro Libre
			Este	Norte		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	L.D.M.						0.2	0.05	0.05	-	0.1	0.05	-
CS-01	18/11/2020	10 cm	709803	8217903	2100	4.7	38.5	0.65	2.17	< 0.13	< 0.1	4.55	< 0.18
CS-02	18/11/2020	10 cm	709273	8215785	2025	4.6	32	0.67	2.09	< 0.13	< 0.1	5.29	< 0.18
CS-03	18/11/2020	10 cm	709904	8214969	2010	3	52.3	0.75	2.03	< 0.13	< 0.1	4.17	< 0.18
CS-04	18/11/2020	10 cm	710558	8216234	2044	1.9	60	0.61	1.09	< 0.13	< 0.1	2.74	< 0.18
CS-04 (Duplicado)	18/11/2020	10 cm	710558	8216234	2044	1.9	60.6	0.56	1.01	-	< 0.1	2.86	-

L.D.M.: Límite de detección del método.

Fuente: UEC, 2021.

Tabla 4.44. Resultados de parámetros orgánicos - BTEX

ECA	- Uso del Suelo Agríco	0.03	0.37	0.082	11				
Estación de Muestreo	Fecha muestreo	Prof. cm	Coordenadas UTM (Datum WGS 84-18S)		Altitud (m.s.n.m.)	Benceno	Tolueno	Etilbenceno	Xileno
			Este	Norte		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		0.0001	0.01	0.01	0.01				
CS-01	18/11/2020	10 cm	709803	8217903	2100	< 0.0001	< 0.01	< 0.01	< 0.01
CS-02	18/11/2020	10 cm	709273	8215785	2025	< 0.0001	< 0.01	< 0.01	< 0.01
CS-03	18/11/2020	10 cm	709904	8214969	2010	< 0.0001	< 0.01	< 0.01	< 0.01
CS-04	18/11/2020	10 cm	710558	8216234	2044	< 0.0001	< 0.01	< 0.01	< 0.01

L.D.M.: Límite de detección del método.

Fuente: UEC, 2021.

Tabla 4.45. Resultados de parámetros orgánicos – Hidrocarburos de petróleo y poliaromáticos

ECA - Uso d	ng/kg PS)	200	1200	3000	0.1	0.1				
Estación de Muestreo	Fecha muestreo	Prof. cm	Coordenadas UTM (Datum WGS 84- 18S)		Altitud (m.s.n.m.)	Fracción de hidrocarburo F1 (C6-C10)	Fracción de hidrocarburo F2 (C10-C28)	Fracción de hidrocarburo F3 (C28-C40)	Naftaleno	Benzo(a)pireno
			Este	Norte		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	L.D.M.						-	-	0.003	0.003
CS-01	18/11/2020	10 cm	709803	8217903	2100	< 0.603	3.47	< 1.86	< 0.003	< 0.003
CS-02	18/11/2020	10 cm	709273	8215785	2025	< 0.603	2.2	< 1.86	< 0.003	< 0.003
CS-03	18/11/2020	10 cm	709904	8214969	2010	< 0.603	2.52	< 1.86	< 0.003	< 0.003
CS-04	18/11/2020	10 cm	710558	8216234	2044	< 0.603	2.57	< 1.86	< 0.003	< 0.003

L.D.M.: Límite de detección del método.

Fuente: UEC, 2021.

Tabla 4.46. Resultados de parámetros orgánicos – Organoclorados

ECA - L	Jso del Suelo Agrícol	0.5	0.1	0.01				
Estación de Muestreo	Fecha muestreo	Prof. cm	Coordenadas UTM (Datum WGS 84-18S)		Altitud (m.s.n.m.)	Bifenilos policlorados - PCB	Tetracloroetileno	Tricloroetileno
			Este	Norte		(mg/kg)	(mg/kg)	(mg/kg)
		L.D.M.	0.0004	0.01	0.0001			
CS-01	18/11/2020	10 cm	709803	8217903	2100	< 0.0004	< 0.01	< 0.0001
CS-02	18/11/2020	10 cm	709273	8215785	2025	< 0.0004	< 0.01	< 0.0001
CS-03	18/11/2020	10 cm	709904	8214969	2010	< 0.0004	< 0.01	< 0.0001
CS-04	18/11/2020	10 cm	710558	8216234	2044	< 0.0004	< 0.01	< 0.0001

L.D.M.: Límite de detección del método.

Fuente: UEC, 2021.