

Figura Nº MT-XX -72: Similaridad de organismos de macroinvertebrados por estación monitoreada.

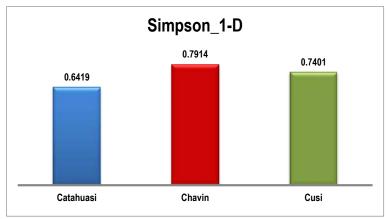
correlacion euclidiana: 0.9989

Fuente: Propia del estudio

9.2.4 Índice de Diversidad

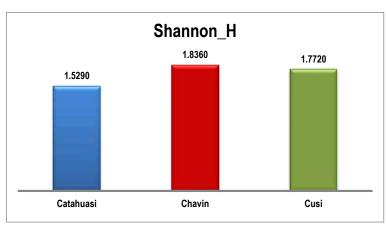
Los índices de diversidad para los macroinvertebrados se determinaron basándose en la integración de los componentes comunitarios mediante índices de riqueza e índices de abundancia que a través del programa estadístico *PAST* se logra detallar los siguientes valores.

Cuadro Nº MT-XX - 47: Índices de diversidad de macroinvertebrados bentónicos en las estaciones monitoreadas


Indices de Biodiversidad	Catahuasi	Chavin	Cusi
Taxa_S	13	12	15
Individuals	11350	10060	1980
Dominance_D	0.3581	0.2086	0.2599
Simpson_1-D	0.6419	0.7914	0.7401
Shannon_H	1.5290	1.8360	1.7720
Evenness_e^H/S	0.3549	0.5227	0.3920
Brillouin	1.5250	1.8320	1.7530
Menhinick	0.1220	0.1196	0.3371
Margalef	1.2850	1.1940	1.8440
Equidad de Pielou (J)	0.5962	0.7389	0.6542
Fisher_alpha	1.4500	1.3450	2.2060
Berger-Parker	0.5727	0.2982	0.4394
Chao-1	13	12	15

Fuente: Propia del estudio

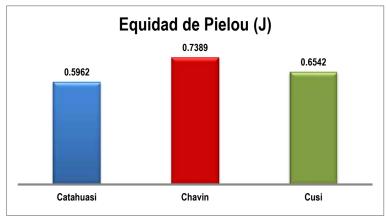
Al igual que para el perifiton el análisis de los índices toma los criterios del índice de Dominancia de Simpson, el índice de Shannon Wiener (H) y el índice de equidad de Pielou (J') con la finalidad de integrar el número de especies presentes y la abundancia de las mismas)


Figura Nº MT-XX - 73: Índice de Dominancia de Simpson (S) (1-D) para macroinvertebrados en las estaciones monitoreadas.

Fuente: Propia del estudio

De acuerdo al grafico los mayores valores de riqueza, según Simpson se presentan en la estación de Chavin, con un valor de 0,7914, y el valor más bajo de riqueza se registra en la estación de Catahuasi con el valor de 0,6419.

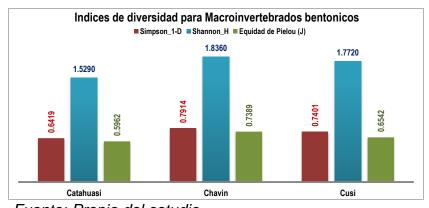
Figura Nº MT-XX - 74: Índice de Shannon Wiener (H') para macroinvertebrados en las estaciones monitoreadas.


Fuente: Propia del estudio

El grafico de Shannon Wiener muestra que la mayor diversidad se encuentra en la estación de Chavin. De acuerdo a esta información

los valores se presentan de 1,5290 bits.ind-1 a 1,8360 bits.ind-1, teniéndose una diversidad de media a alta.

Figura Nº MT-XX - 75: Índice de Equidad de Pielou (J') para macroinvertebrados en las estaciones monitoreadas.



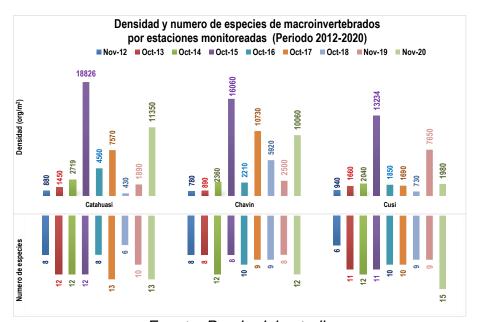
Fuente: Propia del estudio

Este índice muestra una cercanía a la equidad en la distribución de proporciones de abundancia para la estación de Chavin con un valor de 0.7389.

En el Grafica Nº MT-XX - 76, se relacionan los índices de diversidad y de riqueza mencionados, presentando un similar comportamiento, considerando a la estación de Chavin como la estación de mayor riqueza, diversidad, y la estación de Catahuasi como la de menor valor en esos componentes., adicionalmente, la estación de Chavin fue la que mostro la mejor tendencia a la equidad de proporciones.

Figura Nº MT-XX - 76: Relación de índices de diversidad en las estaciones monitoreadas para macroinvertebrados bentónicos

Fuente: Propia del estudio



9.2.5 Comunidad de Macroinvertebrados 2012 – 2020.

Las densidades de macroinvertebrados comparativamente al monitoreo de octubre 2019 se muestran con incremento en densidad en las estaciones de monitoreo, excepto en la estación de Cusi en donde la densidad para este año es mas bajo que el 2019.

De acuerdo al gráfico, los macroinvertebrados en la estación de Catahuasi se presenta muy superior registrándose como el segundo máximo valor de densidad de acuerdo a su historial., en la estación de Cahvin los valores registrados son mayores que el 2018 y 2019 pero no supera el 2017 y el monitoreo de octubre 2015, el cual fue el máximo valor obtenido.

Figura Nº MT-XX – 77: Comparación de organismo/m² de macroinvertebrados según estaciones de Monitoreo en el periodo Noviembre 2012 – Noviembre 2020.

Fuente: Propia del estudio

9.2.6 Índice biológico de familia (IBF)

Con el objeto de determinar la **calidad de agua** en cada estación de monitoreo se utilizó el Índice Biótico de Familias (IBF), el cual evalúa a un bajo nivel taxonómico (Familia) la sensibilidad de estos grupos frente a la contaminación orgánica. Se basa en la tolerancia de diferentes grupos taxonómicos a la contaminación orgánica.

$$IBF = \frac{\sum nT}{N}$$

Dónde:

N: Número de individuos por familia

T: Tolerancia a la contaminación

N: Total de individuos por muestra

Cuadro Nº MT-XX - 48: Clasificación de la calidad de las aguas según IBF

Clase	Rango	Calidad de agua
1	<3.75	Excelente
II	3.76-4.25	Muy Buena
Ш	4.26-5.00	Buena
IV	5.01-5.75	Regular
٧	5.76-6.50	Relativamente Mala
VI	6.51-7.25	Mala
VII	>7.26	Muy Mala

Fuente: Propia del estudio

El IBF para la Estación de Monitoreo de Catahuasi fue 4,90 Clase III que considera una calidad de agua Buena.

Cuadro NºMT-XX-49: Análisis del IBF en la estación Catahuasi

Especies	n	t
Dugesia sp.	340	4
Nais sp.	500	8
Physa venustula	1180	8
Cyprinotus sp.	30	
Corydalus sp.	10	0
Libellula sp.	10	9
Ochrotrichia sp.	950	4
Microcylloepus sp.	6500	4
Simulium sp.	330	6
Cricotopus sp.	1000	7
Torrenticola sp.	110	
IBF	4.90	
CALIDAD III	Bu	ena

Fuente: Propia del estudio

El IBF para la Estación de Chavín fue de 4,91 Clase III que nos indica que la calidad de agua es Buena.

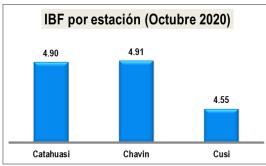
Cuadro NºMT-XX-50: Análisis del IBF en la estación Chavín

Especies	n	t
Physa venustula	1800	8
Lymnaea viatrix	50	6
Cyprinotus sp.	300	
Herpetocypris sp.	250	
Libellula sp.	10	9
Ochrotrichia sp.	3000	4
Microcylloepus sp.	2800	4
Alotanypus sp.	300	7
Eukiefferiella sp.	600	7
Polypedilum sp.	200	7
IBF	4.91	
CALIDAD III	Buena	

Fuente: Propia del estudio

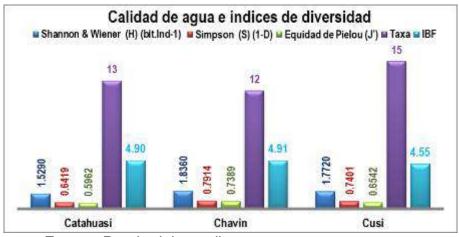
En la Estación Cusi se calculó un IBF de 4,51 Clase III que indica una calidad de agua Buena.

Cuadro NºMT-XX-51: Análisis del IBF en la estación Cusi


Especies	n	t
Andesiops sp.	870	4
Caenis sp.	30	7
Thraulodes sp.	10	2
Neoperla sp.	10	1
Atopsyche sp.	130	0
Hydropsyche sp.	80	4
Ochrotrichia sp.	230	4
Microcylloepus sp.	50	4
Promoresia sp.	10	4
Trichoclinocera sp.	10	6
Simulium sp.	30	6
Bibiocephala sp.	10	0
Eukiefferiella sp.	420	7
Onconeura sp.	30	7
Pentaneura sp.	60	7
IBF	4.	55
CALIDAD III	Buc	ena

Fuente: Propia del estudio

El cuadro siguiente muestra los valores de IBF por estación monitoreada, en donde recopilando los resultados de los cálculos se tienen valores de 4,55 calculado para la estación Cusi, a 4,91 para la estación Chavin, que indica aguas de calidad Buena.


Figura Nº MT-XX - 78: IBF por estación monitoreada.

Fuente: Propia del estudio

Comparativamente si analizamos el IBF con los índices de diversidad obtenidos podemos generar el siguiente gráfico.

Figura Nº MT-XX - 79: Calidad de agua (IBF) e índices de diversidad por estación monitoreada.

Fuente: Propia del estudio

Los valores de los índices evaluados, indicados en el Gráfico Nº MT-XX-98, muestran que los valores de diversidad para este monitoreo en las tres estaciones corresponden a valores medios de diversidad, de riqueza pero sin proporcionalidad en los componentes de abundancia y/o densidad en su estructura. En todas las estaciones de monitoreo, la calidad de agua de acuerdo a los valores de IBF se considera de tipo Bueno, tenemos

representantes de los Baetidae como es *Andesiops sp*, y de los Hydroptilidae (*Ochrotrichia sp*) que si bien son en algo tolerantes a la contaminación organica, por lo general su tolerancia es baja,los representantes de los Elmidae, sensibles a los cambios de condiciones acuáticas como la especie *Mycrocylloepus sp*, registrados en las tres estaciones de monitoreo, y la especie *Eukiefferiella sp* registrado en dos estaciones (Chavin y Cusi), la cual cumple una función especifica de bioturbador de sendimentos que asi posible la renovación y reconstrucción de las condiciones del sedimento, ayudando asi a la calidad de agua y a la biodiversidad.

La especie *Physa venustula*, su registro no influye en el descontrol del hábitat.,por lo general están asociados a hábitat de raíces de plantas, y de acuerdo a su uso como indicador biologico trata de mantener cierta aereacion en el medio acuático.

La presencia de *Cricotopus sp,* tolerante a la contaminancion organica en la estación de Catahuasi, no altera la calidad del hábitat acuático.

Comparativamente en el periodo 2012 – 2020, los valores permanecen semejantes a los años anteriores.

Figura Nº MT-XX - 80: Calidad de agua (IBF) comprativo en el periodo 2012 - 2020

IDG 2012-2020	Catahuasi	Chavin	Cusi
nov-2012	4.170	4.021	4.019
oct-2013	4.220	4.300	4.110
oct-2014	4.000	4.077	4.051
oct-2015	3.976	4.059	4.050
oct-2016	4.043	4.125	4.098
oct-2017	4.114	3.955	3.977
oct-2018	4.120	3.977	4.048
oct-2019	4.133	3.970	4.120
nov-2020	4.083	3.960	4.000

Fuente: Propia del estudio

10.0 CALIDAD DE HABITAT

De acuerdo a la significancia del hábitat en cada una de las zonas de monitoreo tenemos las cuatro condiciones ambientales que puede calificarse este ambiente teniéndose en consideración la singularidad y naturalidad de ellos.

Los valores de calidad de hábitat consideraron los componentes físicos del rio, las zonas inundables, los componentes biológicos y aspectos de calidad de agua, según la evaluación desarrollado por el Kansas Departament of Wildlife & Parks Environmental Services Section (2004).

Zona de Catahuasi

Componente	Calificación maxima	Calificación del hábitat
Físicos	50	31
Ribereño /Zonas inundables	20	2
Biológicos	15	6
Calidad de agua	15	7
∑ Total	4,6	

Valor de la calidad de hábitat = 4,6

Zona Chavín:

Componente	Calificación maxima	Calificación del hábitat
Físicos	50	30
Ribereño /Zonas inundables	20	3
Biológicos	15	3
Calidad de agua	15	9
∑ Total	4,5	

Valor de la calidad de hábitat = 4,5

Zona Cusi:

Componente	Calificación maxima	Calificación del hábitat
Físicos	50	27
Ribereño /Zonas inundables	20	5
Biológicos	15	4
Calidad de agua	15	8
∑ Total	4,4	

Valor de la calidad de hábitat = 4,4

Valor de calidad de hábitat para las estaciones monitoreadas

Localidad	Catahuasi	Chavín	Cusi
Calidad de hábitat	4,6	4,5	4,4

	Puntuación	Calificación
Calidad	8 - 10	Excelente
de	5,6 – 7,9	Bueno
hábitat	3,1 – 5,5	Regular
	1,0 – 3,0	Pobre

11. CONCLUSIONES

Se evaluaron 03 estaciones de monitoreo en las zonas correspondientes a, Catahuasi, Chavín, y Cusi, en donde fueron monitoreados cualitativamente y cuantitativamente los peces entre los cuales se registraron "trucha", "pejerrey", y "carachita", macroinvertebrados bentónicos, y el perifiton.

Las temperaturas del aire se registraron entre 26,00°C y 30,05°C, tendiéndose el valor más bajo en la estación Cusi y el más alto en Catahuasi.

Para la temperatura del agua, los valores registrados se encuentran entre 16,3°C y 27,7°C, siendo el valor más bajo en la estación Cusi, ubicado a 2000 msnm, y el valor más alto inusual, se registró en la Estación Catahuasi a una altitud 1178 msnm. Respecto al monitoreo anterior (2019), los valores disminuyen en un -0,8°C a -1,6°C, en Chavin y Cusi, mientras solo hay un aumento en la estación de Catahuasi con un diferencial de 5,3°C.

Los valores encontrados de pH se encuentran altos entre 7,50 a 8,00 ubicándose el valor más bajo en la estación de monitoreo de Cusi, y el valor más alto en la estación de Chavín y Catahuasi, los valores registrados se encuentran por debajo de los valores límites de la ECA agua en las estaciones de monitoreo. Con respecto al monitoreo anterior el pH disminuye hasta en -0,6 unid pH.

El oxígeno disuelto se presentó con valores de 7,8 mg/L en la estacion de Catahuasi, y de 9,6 mg/L en la estación de Chavin. Comparando con los registros del monitoreo anterior los valores del presente monitoreo incrementan en 1,0 mg/L, en la estación de Catahuasi, y en 2,0 mg/L en las estaciones de Chavin y Cusi.

De acuerdo a los resultados se obtienen que los valores de Dureza Total estuvieron entre 234,0 mg/L para la estación Catahuasi, y de 290,7 mg/L, para la estación de Cusi. Comparando con los registros del monitoreo anterior los valores del presente monitoreo incrementan en 45,9 mg/L, en la estación de Catahuasi, hasta 51,3 mg/L en la estación de Cusi.

El CO2 en las estaciones de monitoreo se registraron con valores de 10,0 mg/L (Estacion Cusi y Chavin) a 15,0 mg/L (Estaciones Catahuasi). Comparativamente con el 2019 disminuye en -10 mg/L para la estación de Catahuasi y Cusi.

Los valores encontrados de turbidez en las estaciones de monitoreo fueron bajos, de 0,53 NTU para la estación Catahuasi a 0,70 NTU para la estación Chavin. En referencia al monitoreo anterior realizado el 2019, se registró un diferencial negativo entre -0,14 mg/L a -0,54 mg/L.

En las capturas de peces se consideró las 3 estaciones con un área total de 2 150m2 a 3900m2, teniéndose un área efectiva de 472,731m2, en las cuales se capturo principalmente trucha, pejerrey y como fauna autóctona, carachita.

La eficiencia de captura para la trucha solo se dio en la estación de Cusi con un 30%, para la especie pejerrey de rio estuvo en 15.0% (Cusi), 25,0% (Catahuasi) y 65,0% (Chavin) y para la especie carachita estuvo en 27,5% en la estación de Catahuasi.

Se registra un total de 14 individuos de trucha con un peso total de 354 g en la estacion Cusi. Para el pejerrey se registró un total en las tres estaciones 94 individuos con un peso total de 2388 g. Para la carachita se registró un total de 24 individuos con un peso de 221 g, en la estacion Catahuasi.

Los valores de densidad (Ind./m2) de O. mykiss "trucha" en la estación Cusi de 0,03 ind/m2 y una densidad por peso de mayor valor 0,749 g/m2.

Los valores máximos de densidad (Ind. /m2) de B. archaeus "pejerrey" fue la estación Chavín con 0150 ind/m2 y una densidad por peso de 3,882 g/m2, y la densidad menor fue en la estación de Catahuasi con 0,023 ind/m2 y una densidad por peso de 0,527 g/m2.

El rango de tallas para la trucha estuvo entre los intervalos de 80 – 99 mm a 180 – 99 mm, teniendo sus mayores porcentajes en el rango de 100 – 119 mm con el 35,71% que comparativamente en el periodo 2012 – 2019 la predominancia de la población se encuentra estable dentro de un rango 140 – 159 mm, mientras para el presente monitoreo 2020 disminuye en un rango de talla.

La frecuencia de tallas para el pejerrey, en las estaciones monitoreadas, muestra un dominio en el rango de 120 – 139 mm con un 51,19%, seguido el rango de 140 - 159 mm (35,71%), comparativamente es un rango superior al periodo 2012-2019, que estuvo en un rango de 100 – 119mm, comparado al año 2012 donde se encontró el mismo rango de talla con un 31,08%

El valor promedio del factor de condición fisiológico (Kn) para el presente monitoreo para la especie trucha, se tuvo valores en 1,213 que correspondió a la estación Cusi. Comparativamente se registra los valores para el periodo evaluado 2012 – 2020, en las estaciones monitoreadas, en donde muestra un patrón de comportamiento oscilante de altas y bajas, teniéndose para este periodo valores superiores al del 2019 pero menores a lo registrado el 2018.

De las muestras colectadas en Trucha, las estaciones se presentan una igualdad de proporciones de hembras y machos con un 50% cada uno. Comparativamente la relación de machos y hembras en el periodo de 2012 a 2020, se presenta siempre una predominancia de hembras hasta el 2019.

La evaluación cualitativa de los estadios gonadales de trucha comparativamente con el monitoreo anterior se tiene que la población de trucha se encuentra en un estadio I de desarrollo con un 85,71%(machos) y 57,14%(hembras) a diferencia del año 2019 que estaba en un periodo estadio III de maduración.

Para el perifiton la riqueza de especies estuvo distribuida en la División Ochrophyta con un 66,67% (10 especies), seguida de la División Chlorophyta (03 especies,) con el 20,00% y las Cyanophytas con un 13,11% (02 especies).

Las densidades para el perifiton fueron de 19 cél/mm² (Cusi), 27 cél/mm² (Chavin) y 28 cél/mm² (Catahuasi), no habiendo una especie dominante, sin embargo, las más representativas fueron *Cymbella affinis, Navicula sp,* y *Cocconeis placentula*.

La mayor riqueza y diversidad de especies se presenta en la estación Catahuasi con 12 especies seguida de Chavín con 10 especies y Cusi con 8 especies.

El Índice Diatómico general se muestra con una calidad normal polución débil, encontrándose un valor en la Estación de Cusi con 4,000, Catahuasi con 4,083 y Chavín con 3,960. Comparativamente, se tiene que los IGD en las estaciones de monitoreo, registran valores menores respecto a los años anteriores principalmente 2018 y 2019.

En los macroinvertebrados bentónicos se tuvo una representatividad de los Artrópodos con el 86,36% (19 especies), y 4,55% para cada uno de los grupos de Anelidos, Platyhelmintos y Molusca con 1 especie cada una.

La densidad para los macroinvertebrados bentónicos se presenta con 1980 organismos/m² (Cusi), 10060 organismos/m² (Chavín) y 11350 organismos/m² (Catahuasi), siendo las especies con mayor densidad, *Ochrotrichia sp., Microcylloepus sp, Andesiops sp., Caenis sp,*

El Índice Biótico por Familias (IBF) se presentó con un valor de 4,90 (Catahuasi), 4,91 (Chavín) y 4,55 (Cusi), indicadores de calidad III, Buena. Comparativamente en el periodo 2012 – 2020, los valores permanecen semejantes a los años anteriores.

Finalmente, la operación de la Central hidroeléctrica El Platanal, no ha generado cambios negativos en la biota acuática de su sector de influencia directa y más bien se viene presentando una mejora en ellos, conforme se adaptan a sus nuevas condiciones hidrológicas ya que el presente año se presentó poblaciones de *Bryconamericus peruanus*, especie nativa y que fue registrada antes del inicio de operaciones en el sector del Caudal Ecológico.

12 BIBLIOGRAFIA

- Aguas Claras Ingeniería y construcción. 2008. Macroinvertebrados Bentónicos Registrados en Río Caren: Cuerpo Receptor Asociado A Proyecto "Piscicultura Alto Caren". Región De La Araucanía, Chile
- Kansas Department of Wildlife & Parks, Environmental Services Section (2004). Subjective Evaluation Of Aquatic Habitats.
- **Liñan Giraldo, Wilbert Eladio. 1989**. Crianza de truchas. Edit. Macro. 104 pp.
- Ministerio del Medio Ambiente. 2005. Metodología para el establecimiento Del Estado Ecológico según la directiva Marco del Agua. Protocolos de muestreo y análisis para Macrofitos.
- Ministerio del Medio Ambiente. 2005. Metodología para el establecimiento el Estado Ecológico según la directiva Marco del Agua. Protocolos de muestreo y análisis para Fitoplancton
- Ministerio del Medio Ambiente. 2005. Metodología para el establecimiento el Estado Ecológico según la directiva Marco del Agua. Protocolos de muestreo y análisis para Bentos
- Universidad Nacional Agraria La Molina. (2011). Monitoreo de aguas del Rio Cañete. Departamento Académico de Manejo Pesquero y Medio Ambiente.
- Walsh Perú S.A. Setiembre 2001.

Primer Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. Octubre - 2002.

Segundo Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. Octubre - 2003.

Tercer Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. Octubre - 2004.

Cuarto Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. - perú.

Walsh Perú S.A. Octubre - 2005.

Quinto Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. Octubre - 2006.

Sexto Monitoreo biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

CÉLEPSA 2007

Séptimo Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Construcción. Lima - Perú. pp 91.

CÉLEPSA 2008

Octavo Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Construcción. Lima - Perú. pp 92.

CÉLEPSA 2009

Noveno Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Construcción. Lima - Perú. pp 104.

CÉLEPSA 2010

Décimo Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 129.

CÉLEPSA 2011

Décimo Primer Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 108.

CÉLEPSA 2012

Décimo Segundo Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 132.

• CÉLEPSA 2013

Décimo Tercer Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 212.

• CÉLEPSA 2014

Décimo Cuarto Monitoreo Biológico de la población de trucha *Oncorhynchus mykiss* en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 203.

CÉLEPSA 2015

Décimo Quinto Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 209.

CÉLEPSA 2016

Décimo Sexto Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 211.

CÉLEPSA 2017

Décimo Septimo Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 222.

CÉLEPSA 2018

Décimo Octavo Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 164.

CÉLEPSA 2019

Décimo Noveno Monitoreo Biológico de la población de trucha Oncorhynchus mykiss en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Operación Lima - Perú. pp 165.

0001439

INFORME

Número 37

Julio, 2019 Lima - Perú

Trigésimo Séptimo Monitoreo Biológico del Camarón de Río (Cryphiops caementarius) en el Río Cañete.

EQUIPO DE ESPECIALISTAS

Jefe de Proyecto de Monitoreo Hidrobiológico

Ing. Pesquero Ana Cecilia Muñoz Córdova Celepsa

Programa y Evaluación de Monitoreo

Ing. Pesquero Ana Cecilia Muñoz Córdova Tec. Abel Sulca Riveros. Celepsa

Representante de Compañía Eléctrica El Platanal S.A.

Ing. Carlos Adrianzen Panduro Gerente de Asuntos Ambientales e Interinstitucionales Celepsa

INDICE

I.	GEN	IERALIDADES	8
II.	ОВЛ	ETIVO GENERAL	8
2	2.1.	Objetivos Específicos	8
III.	MAI	RCO LEGAL	9
IV.	EST	ACIONES DE MONITOREO	9
4	1.1.	Fichas de Estaciones de Monitoreo	12
v.	MET	ODOLOGÍA DE MONITOREO	39
5	5.1.	Muestreo de Camarones	39
	5.1.1	Método de muestreo:	39
	5.1.2	Área Barrida	39
	5.1.3	Cálculo del Área de Estudio	40
	5.1.4	Cálculo de Biomasa y Densidad	40
	5.1.5	Tamaño de Muestra	41
5	5.2.	Parámetros Físico Químicos:	41
5	5.3.	Muestreo de Plancton	41
	5.3.1	Fitoplancton:	42
	5.3.2	Zooplancton:	42
5	5.4.	Muestreo de Bentos	43
	5.4.1	Macroinvertebrados Bentónicos:	43
	5.4.2	Fitoplancton Bentónico:	46
	5.5.	Técnicas Multivariadas de Análisis para la Relación entre Comunidades sobre la Pob	
(camaró	n y Calidad de agua en base a Bio-indicadores.	47
	5.5.1		
	F F 2	A(1):	
	5.5.2		
	5.5.3	O O	
	5.5.4		
	5.6. DEC	Personal de Monitoreo ULTADOS DE LA EVALUACIÓN DE LAS ESTACIONES DE MONITOREO BIOLÓ	
ť	6.1.	Evaluación del Camarón de río (<i>Cryphiops caemenatrius</i>)	
	6.1.1		
	6.1.2	•	
	6.1.2		
	6.1.3	1	
T 7**	6.1.4	,	
	i. KES INITO	ULTADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LAS ESTACIO REO	ONES DE 59

7.1.	Temperatura (°C):	59
7.2.	рН (UpH):	61
7.3.	Oxígeno (mg/L):	62
7.4.	Dureza (mg/L):	63
7.5.	CO ₂ (mg/L):	64
7.6.	Turbidez (NTU):	65
VIII. RES	SULTADOS DE LA EVALUACIÓN DEL PLANCTON	66
8.1.	Muestreo Biológico	66
8.2.	Fitoplancton	66
8.2.	1. Riqueza y Abundancia de las estaciones muestreadas	67
8.2.2	2. Índices de Diversidad e Indicadores Biológicos	70
8.3.	Zooplancton	71
8.3.1	1. Riqueza y Abundancia de las estaciones muestreadas	72
8.3.2	2. Índices de Diversidad e Indicadores Biológicos	74
IX. RES	SULTADOS DE LA EVALUACIÓN DEL BENTOS	74
9.1.	Muestreo Biológico	75
9.2.	Macroinvertebrados bentónicos	75
9.2.	1. Riqueza y Abundancia de las estaciones muestreadas	76
9.2.2	2. Índices de Diversidad Biológica	79
9.3.	Fitoplancton bentónico	80
9.3.1	1. Riqueza y Abundancia de las estaciones muestreadas	82
9.3.2	2. Índices de Diversidad Biológica	83
	CNICAS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTRE COMUNIC LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGUA EN BASE A BIOINDICADOR	
10.1.	Análisis de Frecuencias de Tamaños de Camarón a lo largo del río Cañete	85
10.2.	Análisis del efecto ambiental sobre el camarón de rio	89
10.3.	Análisis de calidad de agua en base a indicadores biológicos	91
XI. CO	NCLUSIONES	97
XII. REC	COMENDACIONES	99
XIII. BIB	LIOGRAFÍA	100
XIV. AN	EXOS	103
MARC	CO TEÓRICO PARA EL PROGRAMA DE MONITOREO	103
GALE	RÍA FOTOGRÁFICA	126

TABLAS

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Julio 2019	10
Tabla 2. Actividades Estación N° 1 del Monitoreo – Julio 2019	12
Tabla 3. Actividades Estación N° 2 del Monitoreo – Julio 2019	13
Tabla 4. Actividades Estación N° 3 del Monitoreo – Julio 2019	14
Tabla 5. Actividades Estación N° 4 del Monitoreo – Julio 2019	15
Tabla 6. Actividades Estación N° 5 del Monitoreo – Julio 2019	16
Tabla 7. Actividades Estación N° 6 del Monitoreo – Julio 2019	17
Tabla 8. Actividades Estación Nº 7 del Monitoreo – Julio 2019	18
Tabla 9. Actividades Estación N° 8 del Monitoreo – Julio 2019	19
Tabla 10. Actividades Estación N° 9 del Monitoreo – Julio 2019	20
Tabla 11. Actividades Estación N° 10 del Monitoreo – Julio 2019	21
Tabla 12. Actividades Estación N° 11 del Monitoreo – Julio 2019	22
Tabla 13. Actividades Estación N° 12 del Monitoreo – Julio 2019	23
Tabla 14. Actividades Estación N° 13 del Monitoreo – Julio 2019	24
Tabla 15. Actividades Estación N° 14 del Monitoreo – Julio 2019	25
Tabla 16. Actividades Estación N° 15 del Monitoreo – Julio 2019	26
Tabla 17. Actividades Estación N° 16 del Monitoreo – Julio 2019	27
Tabla 18. Actividades Estación N° 17 del Monitoreo – Julio 2019	28
Tabla 19. Actividades Estación N° 18 del Monitoreo – Julio 2019	29
Tabla 20. Actividades Estación N° 19 del Monitoreo – Julio 2019	30
Tabla 21. Actividades Estación N° 20 del Monitoreo – Julio 2019	31
Tabla 22. Actividades Estación N° 21 del Monitoreo – Julio 2019	32
Tabla 23. Actividades Estación N° 22 del Monitoreo – Julio 2019	33
Tabla 24. Actividades Estación N° 23 del Monitoreo – Julio 2019	34
Tabla 25. Actividades Estación N° 24 del Monitoreo – Julio 2019	35
Tabla 26. Actividades Estación N° 25 del Monitoreo – Julio 2019	36
Tabla 27. Actividades Estación N° 26 del Monitoreo – Julio 2019	37
Tabla 28. Actividades Estación N° 27 del Monitoreo – Julio 2019	38
Tabla 29. Metodología de Muestreo	39
Tabla 30. Metodologías de Muestreo para Plancton Según Standard Methods	41
Tabla 31. Metodologías de Muestreo para Bentos Según Standard Methods	43
Tabla 32. Calidad de las Aguas según él %EPT	44
Tabla 33. Rangos del Índice de diversidad de Shannon-Wiener (H')	45
Tabla 34. Rangos del Índice de biodiversidad de Margalef (DMg)	45
Tabla 35. Rangos del Índice General Diatómico (IDG)	46
Tabla 36. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de Significancia del	l 95%
	49
Tabla 37. Número de Machos y Hembras, Porcentaje (%) y Proporción Sexual por estrato altitudina	<i>l</i> 50
Tabla 38. Porcentaje de machos y hembras desde julio 2007 a julio 2019	51
Tabla 39. Madurez gonadal de machos y hembras por estratos altitudinales – julio 2019	52
Tabla 40. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de julio del 2	007 a
julio 2019	52
Tabla 41. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud	53
Tabla 42. Abundancia y Biomasa por estrato altitudinal	56

Tabla 43. Valores de los parámetros físico químicos Julio 2019	59
Tabla 44. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – julio 2019	84
Tabla 45. Datos Características de las Estacione de muestreo	104
Tabla 46. Resultados de los Muestreos Biométricos	105
Tabla 47. Número de Individuos Capturados por Pescador en cada Estación de muestreo	118
Tabla 48. Biomasa Capturada por Pescador en cada Estación de Muestreo	119
FIGURAS	
Figura 1. Ubicación de las Estaciones de Monitoreo	11
Figura 2. Camaroneros Alineados para Aplicar la Metodología de Pesca	40
Figura 3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que	son
arrastradas por la corriente del río.	42
Figura 4. Personal colaborador en el monitoreo - Julio 2019.	48
Figura 5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos anuales	53
Figura 6. Distribución Poblacional por estratos – julio 2019	54
Figura 7. Biomasa y Abundancia tallas - julio 2019	54
Figura 8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados desde oc	tubre
2004 a julio 2019	57
Figura 9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados desde oc	tubre
2004 a julio 2019	58
Figura 10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo julio 2019	60
Figura 11. Comparativo de registro de temperatura (C°) del agua, desde julio 2007 a julio 2019	60
Figura 12. Registro del pH del agua, por estratos en el monitoreo julio 2019	61
Figura 13. Comparativo de registro de UpH del agua, desde julio 2007 a julio 2019	62
Figura 14. Registro del oxígeno en el agua, por estratos en el monitoreo julio 2019	62
Figura 15. Comparativo de registro de oxígeno (mg/L) del agua, desde julio 2007 a julio 2019	63
Figura 16. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo julio 2019	63
Figura 17. Comparativo de registro de dureza (mg/L) del agua, desde julio 2007 a julio 2019	64
Figura 18. Registro de CO2 (mg/L) en el agua, por estratos en el monitoreo julio 2019	64
Figura 19. Comparativo de registro de CO2 (mg/L) del agua, desde julio 2007 a julio 2019	65
Figura 20. Registro de transparencia (NTU) en el agua, por estratos en el monitoreo julio 2019	65
Figura 21. Porcentaje de divisiones de fitoplancton identificado – julio 2019	66
Figura 22. Abundancia relativa (%) de las especies de fitoplancton en las estaciones muestreadas -	- julio
2019	67
Figura 23. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - Julio 2019	68
Figura 24. Cymbella affinis	68
Figura 25. Scenedesmus sp. (cenobio)	69
Figura 26. Anabaena sp.	70
Figura 27. Índices de diversidad aplicados al fitoplancton – julio 2019	70
Figura 28. Porcentaje de divisiones de zooplancton identificado – julio 2019	71
Figura 29. Abundancia relativa (%) de las especies de zooplancton en las estaciones muestreadas -	julio
2019.	71
Figura 30. Abundancia y riqueza del zooplancton en las estaciones muestreadas - julio 2019	72
Figura 31. Centropyxis sp.	72

Figura	32. <i>Metacyclops sp.</i>	73
Figura	33. Euchlanis dilatata	73
Figura	34. Índices de diversidad aplicados al zooplancton – julio 2019	74
Figura	35. <i>Macroinvertebrados bentónicos identificados en Julio</i> 2019	75
Figura	36. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las esta	ciones
muestre	eadas - julio 2019	76
Figura	37. Riqueza y abundancia de las especies de bentos Julio 2019	76
Figura	38. Caenis sp.	77
Figura	39. Andesiops sp	77
Figura	40. Nais sp.	77
Figura	41. Physa venustula	78
Figura	42. Dorylaimus sp	78
Figura	43. Dugesia sp.	79
Figura	44. Hydra sp	79
Figura	45. Índices de diversidad biológica de macroinvertebrados bentónicos encontrado	en el
presen	te monitoreo – julio 2019	79
	46. % EPT de macroinvertebrados bentónicos encontrados para el presente monitoreo – Julio	2019
_	47. Porcentaje del fitoplancton bentónico obtenido en el presente monitoreo – julio 2019	81
_	48. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estaciones muest	
– julio 2	2019	81
_	49. Abundancia y riqueza del fitoplancton b entónico en las estaciones muestreadas – Julio	
	50. Fragillaria capucina	
Figura	51. Cymbella affinis	82
Figura	52. Pediastrum boryanum (cenobio).	83
Figura	53. Oscillatoria tenuis (filamento)	83
Figura	54. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – julio 2019	84
Figura	55. IDG de fitoplancton bentónicos encontrados para el presente monitoreo julio 2019	85
Figura	56. Frecuencia de tamaños por sexo (machos) y estación de muestreo	86
Figura	57. Frecuencia de tamaños por sexo (hembras) y estación de muestreo	87
_	58. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo	
Figura	59. Distribución de la frecuencia de tamaños por sexo	89
Figura	60. Abundancia de hembras y machos por estación de muestreo	89
_	61. Análisis de Correspondencia Canónica abundancia del camarón, variables ambient	
indicad	ores biológicos Monitoreo Julio 2019	90
	62. Parámetros de monitoreo por estaciones julio 2019	
•	63. Abundancia de la comunidad del perifiton por estaciones de muestreo	
•	64. Abundancia de la comunidad del bentos por estaciones de muestreo	
_		
_	65. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton	
Figura	65. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton	95
Ü	66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos	95 96
Figura	66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos 67. Programa de Monitoreo	95 96 103
Figura Figura	66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos	95 96 103 126

Figura	71. Conteo del camarón recolectado	128
U	72. Medida de la talla del camarón	
Figura	73. Medida del peso del camarón	129
Figura	74. Extracción del camarón en el río Cañete	130
Figura	75. Grupo de trabajo – Julio 2019	130

I. GENERALIDADES

El presente Monitoreo biológico, es realizado como parte de los compromisos derivados del Estudio de Impacto Ambiental del Proyecto Hidroeléctrico Integral "El Platanal", de la Compañía Eléctrica El Platanal S.A. (CELEPSA), para realizarse en el río Cañete, aprobado por la Dirección de Asuntos Ambientales Normativos y Oficializada con Oficio Nº 519-99-MITINCI-VMI-DNI-DAN del 23 de agosto del 1999. Dicha aprobación contó con la recomendación de la Dirección de Asuntos Ambientales (DGAA) del Ministerio de Energía y Minas (Oficio Nº 174-99-EM/DGAA del 12 de julio del 1999).

El Programa de Monitoreo Biológico se inicia con la Línea Base del Camarón de Río (*Cryphiops caementarius*) en julio del 2001. Dicha evaluación fue la primera del Programa en referencia, la cual contempla la realización de evaluaciones anuales en los meses de julio y octubre, para cada fase del proyecto (fase previa, fase de construcción y fase de operación), en cuatro sectores del río Cañete (Putinza – Capillucas, Quebrada Chicchicay – Chavín, Quebrada Riachuelo – Catahuasi, San Juan y San Juanito). Posteriormente debido a la naturaleza de la especie se amplió hacia los sectores de Alto Húngara – Caltopa y Boca de Río.

Compañía Eléctrica El Platanal S.A. (CELEPSA) ejecutó el Trigésimo Séptimo Monitoreo de Camarón de río (*Cryphiops caementarius*), correspondiente a la Fase de Operación y primer monitoreo del año 2019, cuyos resultados consiste en evaluar las condiciones biológicas en:

- Veintisiete zonas determinadas para muestras de camarones (detallándose los parámetros poblacionales: número de individuos o abundancia, biomasa, proporción sexual total y condición reproductiva de la población) y agua (Parámetros físicoquímicos);
- Dieciocho zonas determinadas para plancton (fitoplancton y zooplancton) y bentos (macroinvertebrados bentónicas y fitoplancton bentónico).

II. OBJETIVO GENERAL

Determinar los principales parámetros de la población de camarón de río (*Cryphiops caementarius*) presente en los sectores del río Cañete comprendidos entre los 0 y 1700 m.s.n.m. en nuestra etapa de Operación.

2.1. Objetivos Específicos

- Determinar la abundancia y biomasa del camarón de río por sexo y estrato altitudinal.
- Determinar la proporción sexual total y por estrato altitudinal.
- Determinar la estructura de tallas por estrato altitudinal.
- Determinar la condición reproductiva de la población.
- Obtener los principales parámetros físicos-químicos en los sectores evaluados.
- Determinar los principales indicadores biológicos en relación al recurso camarón de río.
- Analizar cualitativa y cuantitativamente el plancton (Fitoplancton y zooplancton) y bentos (Fitoplancton bentónico y macroinvertebrados bentónicos) relacionando con la alimentación del camarón de río (Cryphiops caementarius).

III. MARCO LEGAL

En la legislación ambiental vigente, la actividad eléctrica, se realiza en el marco de lo establecido en la Ley de Concesiones Eléctricas (D.L. N° 25844), la Ley General del Ambiente Ley N° 28611, el Decreto legislativo 757 para el Crecimiento de la Inversión Privada, y disposiciones legales bajo el concepto de Desarrollo Sostenible de los recursos naturales.

Normatividad complementaria como el Reglamento para la Protección Ambiental en las Actividades Eléctricas (D.S. N° 009-93-EM) y de las servidumbres de embalses de aguas para fines energéticos, industriales y mineros, norman la protección del ambiente por la actividad energética.

El monitoreo ambiental se realiza siguiendo el Protocolo de Monitoreo de Calidad de Agua contenida en las Guías Ambientales elaboradas por el Ministerio de Energía y Minas.

Para la calidad de agua estarán determinados por los Estándares Nacionales de Calidad Ambiental dadas en el D.S. Nº 002-2008-MINAM.

Protocolo Nacional de Monitoreo de la Calidad de los Cuerpos Naturales de Agua Superficial Resolución Jefatural N° 182-2011-ANA.

IV. ESTACIONES DE MONITOREO

De acuerdo al Plan de Manejo Ambiental del Proyecto Hidroeléctrico El Platanal y tomando las recomendaciones del Instituto del Mar del Perú (Imarpe) se ha estandarizado a tres estaciones por estrato altitudinal de 200 m.s.n.m. Cabe mencionar que el primer estrato es el único que se considera de 0 - 100 m.s.n.m., debido a la abundancia que se encuentra de la especie en dicho sector por ser zona de reserva o reclutamiento y que muestra condiciones distintas que amerita que sea evaluada con más énfasis. Se han destinado 27 puntos de control (Tabla 1), con sus respectivas ubicaciones (Figura 1).

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Julio 2019

SECTORES EVALUADOS	ALTITUD	ESTACIÓN	ESTRATOS
		PAMPILLA	0 - 100
Boca de Río	0 - 100	LUCUMO	0 - 100
		FORTALEZA	0 - 100
		ALTO HUNGARA	100 - 300
Alto Hungará - Caltopa	100 - 300	CONCON	100 - 300
		CALTOPA	100 - 300
		SOCSI	300 - 500
Socsi - Lunahuaná	300 - 500	PAULLO	300 - 500
		LUNAHUANA	300 - 500
		CATAPALLA	500 - 700
Catapalla - Pacarán	500 - 700	JACAYITA	500 - 700
		PACARÁN	500 - 700
		HUAGIL	700 - 900
Huagil - Machuranga	700 - 900	ZUÑIGA	700 - 900
		MACHURANGA	700 - 900
		SAN JUANITO	900 - 1100
San Juanito - La Tolva	900 - 1100	PIEDRA COCA	900 - 1100
		LA TOLVA	900 - 1100
		HUALLAMPI	1100 - 1300
Huallampi - Canchán	1100 - 1300	TACUASIMONTE	1100 - 1300
		CANCHAN	1100 - 1300
		ESCARILLA	1300 - 1500
Escarilla - Chicchicay	1300 - 1500	PUENTE CHAVIN	1300 - 1500
		CHICHICAY	1300 - 1500
		CAPILLUCAS	1500 - 1700
Capillucas - Calachota	1500 - 1700	PUENTE PUTINZA	1500 - 1700
		CALACHOTA	1500 - 1700

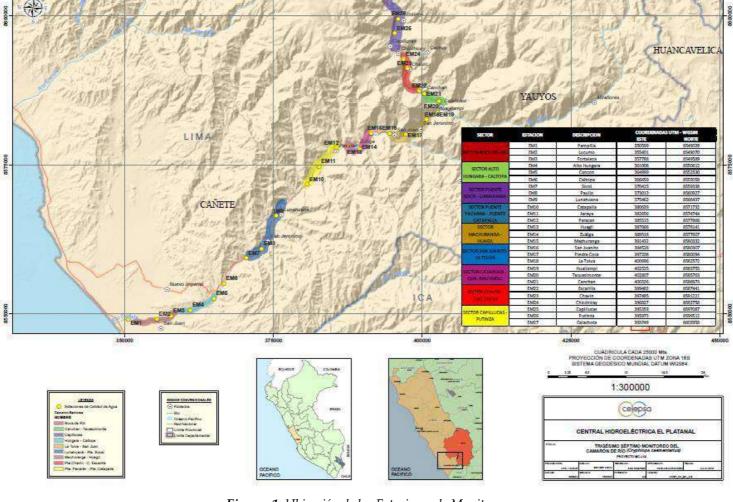


Figura 1. Ubicación de las Estaciones de Monitoreo

4.1. Fichas de Estaciones de Monitoreo

Tabla 2. Actividades Estación N° 1 del Monitoreo − Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 27	l- 27										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Calachota	•										
Ubicación					Coordenada	ıs						
Región	Lima				UTM E		393842	393842				
Provincia	Cañete				UTM S 8602429			29				
Sector Evaluado	Capillucas -	Calachota			Fecha 11/07/2019							
Referencia	1 500 a 1 700) m.s.n.m.			Hora 11:46							
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez(NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	x	x		
Muestras Biológicas	E-27BC	E-27BF	E-27BZ	E-27BFb	E-27Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton			х									
Biológico Fitoplancton Bentónico				х								
Biológico Macroinvertebrados Bentónicos					х							

 $^{\mathsf{la}}13$

Tabla 3. Actividades Estación N° 2 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-2	2										
Nombre de la Empresa	Compañía Elé	ompañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Lúcumo	úcumo										
Ubicación					Coorde	nadas						
Región	Lima				UTM E		351517					
Provincia	Cañete				UTM S		8549007					
Sector Evaluado	Pampilla - Fo	ortaleza			Fecha		12/07/2019					
Referencia	0 a 100 m.s.n.	m.			Hora	Hora 13:29						
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	х	х		
Muestras Biológicas	E-02BC											
Biológico Camarón	х											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 4. Actividades Estación N° 3 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-3	3										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Fortaleza	ortaleza										
Ubicación					Coordenad	as						
Región	Lima				UTM E		358583					
Provincia	Cañete				UTM S		8550103					
Sector Evaluado	Pampilla - l	Fortaleza			Fecha		13/07/2019					
Referencia	0 a 100 m.s.ı	n.m.			Hora	Hora 10:22						
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	x	х	х	X	х	х	x	x	х		
Muestras Biológicas	E-03BC	E-03BF	E-03BZ	E-03BFb	E-03Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton			х									
Biológico Fitoplancton Bentónico				х					· ·			
Biológico Macroinvertebrados Bentónicos					х							

Tabla 5. Actividades Estación N° 4 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-4	3-4										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Alto Hunga	Alto Hungará										
Ubicación					Coorde	enadas						
Región	Lima				UTM E	ı	362675					
Provincia	Cañete				UTM S		8551281					
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		13/07/2019					
Referencia	100 a 200 m.	s.n.m.			Hora	Hora 12:42						
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	x	х	x	х	х	х	х	х	х	x		
Muestras Biológicas	E-04BC											
Biológico Camarón	х											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 6. Actividades Estación N° 5 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-5	5 5										
Nombre de la Empresa	Compañía I	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Concón											
Ubicación					Coordenadas							
Región	Lima				UTM E		364522					
Provincia	Cañete				UTM S		8552531					
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		13/07/2019					
Referencia	100 a 200 m	.s.n.m.			Hora 15:40							
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	х	х		
Muestras Biológicas	E-05BC	E-05BF	E-05BZ	E-05BFb	E-05Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton			х									
Biológico Fitoplancton Bentónico				x								
Biológico Macroinvertebrados Bentónicos					х							

Tabla 7. Actividades Estación N° 6 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 6	i- 6										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Caltopa	Caltopa										
Ubicación					Coorde	enadas						
Región	Lima				UTM E		366664					
Provincia	Cañete				UTM S 8552746			552746				
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		14/07/2019					
Referencia	100 a 200 m.	s.n.m.			Hora		09:29			_		
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	х	х		
Muestras Biológicas	E-06BC											
Biológico Camarón	х											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 8. Actividades Estación N° 7 del Monitoreo – Julio 2019

celepsa	ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-7										
Nombre de la Empresa	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Puente Socsi										
Ubicación					Coordenadas						
Región	Lima	Lima					369513				
Provincia	Cañete				UTM S		8558710				
Sector Evaluado	Pte. Socsi - Lunahúana				Fecha		14/07/2015				
Referencia	300 a 500 m.	300 a 500 m.s.n.m.					11:33				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	х	х	
Muestras Biológicas	E-07BC	E-07BF	E-07BZ	E-07BFb	E-07Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					x						

Tabla 9. Actividades Estación N° 8 del Monitoreo – Julio 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E-8											
Nombre de la Empresa	Compañía Eléctrica El Platanal S.A.											
Zona de Muestreo	Paullo											
Ubicación						Coordenadas						
Región	Lima	Lima				UTM E		373007				
Provincia	Cañete	Cañete					8560900					
Sector Evaluado	Pte. Socsi - L	Pte. Socsi - Lunahúana					14/07/2019					
Referencia	300 a 500 m.	300 a 500 m.s.n.m.					14:14					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	x	х	х	х	х	х	х	х		
Muestras Biológicas	E-08BC											
Biológico Camarón	х											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 10. Actividades Estación N° 9 del Monitoreo – Julio 2019

celepsa				E	STACIÓN DE	EMONITOR	ЕО			
Estación de Monitoreo	E- 9									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Lunahuana									
Ubicación					Coordenadas	5				
Región	Lima				UTM E		374785			
Provincia	Cañete				UTM S		8566039			
Sector Evaluado	Pte. Socsi - I	Lunahuana			Fecha		14/07/2019)		
Referencia	300 a 500 m.	s.n.m.			Hora		16:41			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	х	х	х	х	x	х	x	х
Muestras Biológicas	E-09BC	E-09BF	E-09BZ	E-09BFb	E-09Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		x								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				x						
Biológico Macroinvertebrados Bentónicos					x					

Tabla 11. Actividades Estación N° 10 del Monitoreo – Julio 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 10									
Nombre de la Empresa	Compañía E	lléctrica El P	latanal S.A.							
Zona de Muestreo	Puente Cata	palla								
Ubicación					Coorde	enadas				
Región	Lima				UTM E		380869			
Provincia	Cañete				UTM S		8572148			
Sector Evaluado	Pte. Catapal	la - Pte. Paca	ırán		Fecha		15/07/2019			
Referencia	500 a 700 m.	s.n.m.			Hora		15:09			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	x	x	x	х	х	х	х	х	х	x
Muestras Biológicas	E-10BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 12. Actividades Estación N° 11 del Monitoreo – Julio 2019

celepsa				E	STACIÓN DI	E MONITOR	REO			
Estación de Monitoreo	E- 11									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Jacaya									
Ubicación					Coordenada	ıs				
Región	Lima				UTM E		382818			
Provincia	Cañete				UTM S		8574887			
Sector Evaluado	Pte. Catapal	la - Pte. Paca	arán		Fecha		15/07/2019	9		
Referencia	500 a 700 m.	s.n.m.			Hora		12:35			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	x	x	х	х	х	х	х	х	x	x
Muestras Biológicas	E-11BC	E-11BF	E-11BZ	E-11BFb	E-11Bmb					
Biológico Camarón	x									
Biológico Fitoplancton		x								
Biológico Zooplancton			x							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					x					

Tabla 13. Actividades Estación N° 12 del Monitoreo − Julio 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 12									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Pacarán									
Ubicación					Coorde	enadas				
Región	Lima				UTM E	ı	385511			
Provincia	Cañete				UTM S		8577880			
Sector Evaluado	Pte. Catapal	la - Pte. Paca	ırán		Fecha		15/07/2019			
Referencia	500 a 700 m.	s.n.m.			Hora		10:42			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	x	x	x	х	х	x	х	x	X	х
Muestras Biológicas	E-12BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 14. Actividades Estación N° 13 del Monitoreo – Julio 2019

celepsa				E	STACIÓN DE	MONITOR	ЕО			
Estación de Monitoreo	E- 13									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Huagil									
Ubicación					Coordenadas	5				
Región	Lima				UTM E		387378			
Provincia	Cañete				UTM S		8578135			
Sector Evaluado	Huagil - Ma	churanga			Fecha		15/07/201	9		
Referencia	700 a 900 m.	s.n.m.			Hora		08:43			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	Х	х
Muestras Biológicas	E-13BC	E-13BF	E-13BZ	E-13BFb	E-13Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				x						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 15. Actividades Estación N° 14 del Monitoreo – Julio 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 14									
Nombre de la Empresa	Compañía E	léctrica El Pl	latanal S.A.							
Zona de Muestreo	Zuñiga									
Ubicación					Coorde	enadas				
Región	Lima				UTM E	ı	389449			
Provincia	Cañete				UTM S		8577610			
Sector Evaluado	Huagil - Ma	churanga			Fecha		18/07/2019			
Referencia	700 a 900 m.	s.n.m.			Hora		09:08			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	x	х
Muestras Biológicas	E-14BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 16. Actividades Estación N° 15 del Monitoreo – Julio 2019

celepsa]	ESTACIÓN DE	MONITORE	EO			
Estación de Monitoreo	E- 15									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Machurang	a								
Ubicación					Coordenadas					
Región	Lima				UTM E		391505			
Provincia	Cañete				UTM S		8580328			
Sector Evaluado	Huagil - Ma	churanga			Fecha		18/07/201	9		
Referencia	700 a 900 m	s.n.m.			Hora		11:19			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	x	х	х	X	x
Muestras Biológicas	E-15BC	E-15BF	E-15BZ	E-15BFb	E-15Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 17. Actividades Estación N° 16 del Monitoreo – Julio 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 16									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	San Juanito									
Ubicación	_				Coorde	nadas				
Región	Lima				UTM E		394410			
Provincia	Cañete				UTM S		8580325			
Sector Evaluado	San Juanito	- La Tolva			Fecha		17/07/2019			
Referencia	900 a 1 100 r	n.s.n.m.			Hora		15:45			_
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	х	x	х	х	х	х	х	х
Muestras Biológicas	E-16BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 18. Actividades Estación N° 17 del Monitoreo – Julio 2019

celepsa				ES	TACIÓN DE	MONITORE	О			
Estación de Monitoreo	E- 17									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Piedra Coca									
Ubicación					Coordenadas	5				
Región	Lima				UTM E		397490			
Provincia	Cañete				UTM S		8580163			
Sector Evaluado	San Juanito	- La Tolva			Fecha		17/07/2019	9		
Referencia	900 a 1 100 r	n.s.n.m.			Hora		13:55			_
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-17BC	E-17BF	E-17BZ	E-17BFb	E-17Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					x					

Tabla 19. Actividades Estación N° 18 del Monitoreo – Julio 2019

celepsa				Es	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 18									
Nombre de la Empresa	Compañía E	léctrica El Pl	latanal S.A.							
Zona de Muestreo	La Tolva									
Ubicación					Coorde	enadas				
Región	Lima				UTM E		400752			
Provincia	Cañete				UTM S		8582704			
Sector Evaluado	San Juanito	- La Tolva			Fecha		17/07/2019			
Referencia	900 a 1 100 r	n.s.n.m.			Hora		11:03			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	Х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-18BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 20. Actividades Estación N° 19 del Monitoreo – Julio 2019

celepsa				E	STACIÓN DE	MONITOR	ЕО			
Estación de Monitoreo	E- 19									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Huayllampi									
Ubicación					Coordenadas	3				
Región	Lima				UTM E		401842			
Provincia	Cañete				UTM S		8583245			
Sector Evaluado	E-21Bmb				Fecha		17/07/2019	9		
Referencia	1 100 a 1 300) m.s.n.m.			Hora		09:34			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	x	х	x	x	х	х	x	х
Muestras Biológicas	E-19BC	E-19BF	E-19BZ	E-19BFb	E-19Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		x								
Biológico Zooplancton			x							
Biológico Fitoplancton Bentónico				x						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 21. Actividades Estación N° 20 del Monitoreo – Julio 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 20									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Tacuasimon	te								
Ubicación					Coorde	nadas				
Región	Lima				UTM E		402931			
Provincia	Cañete				UTM S		8585765			
Sector Evaluado	Huayllampi	- Canchan			Fecha		16/07/2015			
Referencia	1 100 a 1 300	m.s.n.m.			Hora		15:54			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	x	x	x	х	х	x	х	х	Х	х
Muestras Biológicas	E-20BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 22. Actividades Estación N° 21 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 21	21									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Canchan										
Ubicación					Coordenadas	3					
Región	Lima				UTM E		400847				
Provincia	Cañete	Cañete				UTM S 8586		8586172			
Sector Evaluado	Huayllampi	- Canchan			Fecha 16/07/201)			
Referencia	1 100 a 1 300) m.s.n.m.			Hora	Hora 14:05					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	x	x	х	x	x	х	х	x	х	
Muestras Biológicas	E-21BC	E-21BF	E-21BZ	E-21BFb	E-21Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					х						

Tabla 23. Actividades Estación N° 22 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO								
Estación de Monitoreo	E- 22	22								
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Escarilla									
Ubicación					Coorde	nadas				
Región	Lima				UTM E		399442			
Provincia	Cañete				UTM S 8587471					
Sector Evaluado	Escarilla - C	hicchicay			Fecha 16/07/2019					
Referencia	1 300 a 1 500	m.s.n.m.			Hora	Hora 11:44				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-22BC									
Biológico Camarón	Х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 24. Actividades Estación N° 23 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO								
Estación de Monitoreo	E- 23	. 23								
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Chavín	-								
Ubicación					Coordenadas					
Región	Lima				UTM E		397492			
Provincia	Cañete	Cañete				UTM S				
Sector Evaluado	Escarilla - C	Chicchicay			Fecha		16/07/2019	9		
Referencia	1 300 a 1 500	0 m.s.n.m.			Hora 09:46					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	x	х
Muestras Biológicas	E-23BC	E-23BF	E-23BZ	E-23BFb	E-23Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 25. Actividades Estación N° 24 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO								
Estación de Monitoreo	E- 24	24								
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Chicchicay									
Ubicación					Coordenadas					
Región	Lima				UTM E		396781			
Provincia	Cañete				UTM S		8592869			
Sector Evaluado	Escarilla - C	hicchicay			Fecha	11/07/2019	9			
Referencia	1 300 a 1 500	m.s.n.m.			Hora	Hora 15:40				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	x	х	х	x	х	x	х
Muestras Biológicas	E-24BC	E-24BF	E-24BZ	E-24BFb	E-24Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х					·	
Biológico Macroinvertebrados Bentónicos					x					

Tabla 26. Actividades Estación N° 25 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO								
Estación de Monitoreo	E- 25	25								
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Capillucas									
Ubicación					Coordenadas					
Región	Lima				UTM E		395311			
Provincia	Cañete				UTM S		8597223			
Sector Evaluado	Capillucas -	Calachota			Fecha 11/07/201			9		
Referencia	1 500 a 1 700	m.s.n.m.			Hora	Hora 14:22				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	x	x	x	х	х	х	х	x	x	х
Muestras Biológicas	E-25BC	E-25BF	E-25BZ	E-25BFb	E-25Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 27. Actividades Estación N° 26 del Monitoreo – Julio 2019

celepsa		ESTACIÓN DE MONITOREO								
Estación de Monitoreo	E- 26	- 26								
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Putinza									
Ubicación	_				Coorde	nadas				
Región	Lima				UTM E		396028			
Provincia	Cañete				UTM S	UTM S 8599580				
Sector Evaluado	Capillucas -	Calachota			Fecha	Fecha 11/07/2019				
Referencia	1 500 a 1 700	m.s.n.m.			Hora	Hora 12:56				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	x	x	х	x	x	х	Х	х
Muestras Biológicas	E-26BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 28. Actividades Estación N° 27 del Monitoreo − Julio 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 27	27									
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Calachota										
Ubicación					Coordenadas	3					
Región	Lima				UTM E		393842				
Provincia	Cañete	Cañete				UTM S		8602429			
Sector Evaluado	Capillucas -	Calachota			Fecha 11		11/07/201	9			
Referencia	1 500 a 1 700) m.s.n.m.			Hora	Hora 11:46					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	Х	х	
Muestras Biológicas	E-27BC	E-27BF	E-27BZ	E-27BFb	E-27Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton		x									
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					x						

V. METODOLOGÍA DE MONITOREO

La presente evaluación se llevó a cabo del 11 al 18 de julio 2019, identificando las condiciones ambientales y bioecológicas, en las que se encuentra las estaciones de monitoreo establecidas en la Línea Base del Camarón de río (*Cryphiops caementarius*) del Proyecto Hidroeléctrico "El Platanal", a través de la evaluación del camarón de río (*Cryphiops caementarius*), determinación de la calidad del agua de río y la caracterización de plancton y bentos.

Las ubicaciones de las estaciones de monitoreo fueron realizadas mediante la ayuda de un GPSmap 76CSx marca GARMIN, en la cual se registró las características del cuerpo de agua, tomando en cuenta el ancho y profundidad promedios, sección longitudinal del río muestreado, tipo de fondo, de vegetación ribereña y transparencia del sector de río monitoreado.

Las altitudes de las estaciones de monitoreo fluctuaron entre 0 m.s.n.m. (Pampilla) y 1700 m.s.n.m. (Calachota).

5.1. Muestreo de Camarones

5.1.1. Método de muestreo:

La estimación de la población presente en el área de estudio se basó en la aplicación del método del área barrida (Espino, 1984), estimándose las densidades en abundancia (número de individuos) y biomasa (peso de individuos) por estación, y extrapolando los datos a cada estrato (Tabla 29).

Tabla 29. Metodología de Muestreo

Parámetros	Metodología
Camarones	Aplicación del Método del Área Barrida – Modificado (Espino, 1984)
te: Espino, 1984	

5.1.2. Área Barrida

En cada sección de evaluación del cauce, se consideró una longitud de 40 m, y el ancho promedio de la misma; la colecta de muestras se realizó mediante el método de buceo diurno, ocho pescadores experimentados realizaron las capturas de camarones, los cuales fueron contados, pesados, medidos y sexados en campo. En la colecta, se contabiliza también los camarones que no llegan a ser capturados.

Debemos indicar que CELEPSA realizó una selección muy exhaustiva de los extractores con los que trabajo para la captura de la muestra, los cuales fueron elegidos por su esfuerzo de pesca, contratando a los de mayor capacidad, lo que ha permitido lograr una estimación adecuada de las poblaciones en nuestros puntos de muestreo en el presente monitoreo.

Se debe considerar la variabilidad que existe al usar a un extractor como aparejo de pesca, pues sus resultados varían de acuerdo a la capacidad de pesca del mismo, motivo por el que se selecciona y trabaja con el mismo grupo humano mientras su nivel de esfuerzo de pesca se mantenga (Figura 2).

Figura 2. Camaroneros Alineados para Aplicar la Metodología de Pesca

5.1.3. Cálculo del Área de Estudio

El área del espejo de agua y profundidad promedio de cada estrato se calculó sobre la base de la longitud del curso de agua (definido por cartografía) y el ancho promedio del lecho (establecido en el terreno). Se tuvo en cuenta los meandros y ramales del río para realizar las correcciones en el área de cada estrato. El río presentó un cauce bastante homogéneo entre los estratos $0-1\,700\,$ m.s.n.m., teniéndose para este año el encausamiento y limpieza de rio en los estratos de $0-500\,$ m.s.n.m., por parte del Gobierno Regional homogenizando el área sin ramales como en años anteriores.

Cabe destacar que los valores son estimados y que varían dependiendo de las estaciones del año y fluctuaciones del caudal del río. Por lo que desde el 2014 se ha presentado un incremento del área de espejo de agua en los sectores bajos como Pampilla debido a la operación del embalse Paucarcocha – Celepsa, lo que permite mantener el incremento del área hasta la fecha, generando como consecuencia una mayor habitad y mejores condiciones de habitabilidad para el camarón de río.

5.1.4. Cálculo de Biomasa y Densidad

La biomasa se estimó considerando el área disponible de evaluación y la densidad (g/m2), aplicando la siguiente ecuación:

BIOMASA = Área disponible (m^2) / Densidad (g/m^2)

El área disponible (m²) es el porcentaje del área total del río que posee las condiciones adecuadas del hábitat de los camarones mediante una estimación por medio de la observación directa del ancho y longitud del transecto evaluado (40 m), esta área se calculó para cada estación de monitoreo.

La densidad se calculó considerando dos datos: las capturas de los camarones obtenidas en peso (gramos) y el número de individuos por área total disponible (Ind/m²). El peso total de los individuos capturados (gramos) por unidad de superficie (m²) se calculó en función al esfuerzo pesquero (CPUE) en el área de pesca. Para determinar el CPUE se contabilizó los camarones obtenidos por cada camaronero en cada estación de monitoreo, así como los ejemplares que escaparon de sus manos.

Para obtener la frecuencia de tallas y la relación talla - peso se registró la longitud (milímetros), peso (gramos), sexo y el desarrollo gonadal se clasificó según los estadios definidos por *Pérez et*

al. (1977), citado en *Viacava et al.* (1978) de cada individuo capturado por estación de monitoreo y para el total de las estaciones.

5.1.5. Tamaño de Muestra

Examinar la población entera, lo cual puede resultar físicamente imposible o no práctico, puede examinarse una muestra de la población con el propósito de inferir los resultados encontrados. Una técnica para obtener muestras representativas de la población es el muestreo aleatorio, ya que es un proceso que asegura en cualquier momento la misma o igual probabilidad de ser incluido en la muestra a todos los elementos que pertenezcan a la población en dicho momento.

Si la población es finita, es decir conocemos el total de la población y deseásemos saber cuántos del total tendremos que estudiar, la respuesta se representa en la siguiente formula:

$$n = \frac{N * Z_a^2 * p * q}{d^2 * (N-1) + Z_a^2 * p * q}$$

5.2. Parámetros Físico Químicos:

Para la ubicación de las estaciones de monitoreo previamente determinadas, se utilizó un GPSmap 76CSx marca GARMIN y para los análisis de agua su uso un kit FF1A, un multiparámetro y un Turbidimetro Digital, donde se midieron los siguientes parámetros físico-químicos del agua:

- Oxígeno Disuelto (mg/L)
- Dureza (mg/L)
- Temperatura del agua (°C)
- pH (UpH)
- Nitritos (mg/L)
- CO₂ (mg/L)
- Turbidez (NTU)

Además de estos parámetros, se determinó visualmente otras características del hábitat de las especies evaluadas como: ancho y profundidad, tipo de fondo, color, transparencia, etc.

5.3. Muestreo de Plancton

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 30. Metodologías de Muestreo para Plancton Según Standard Methods

Parámetros	Metodología
Fitoplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200F)
Zooplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200G)

Fuente: APHA-AWWA-WEF, 2012

5.3.1. **Fitoplancton:**

Para la colección de fitoplancton se tuvo en cuenta el tipo de cuerpo de agua de donde se toma la muestra.

Las aguas claras o cristalinas son oligotróficas, o sea, que tienen muy baja densidad de fitoplancton, por lo que es colocado en el medio acuático concentrándose en la red vertido en un frasco, para los análisis en las estaciones.

Las muestras de Fitoplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de 20 µm de abertura de malla. La red fue colocada en el río, durante 20 minutos. Con estos datos y conociendo además el diámetro de la boca

de la red planctónica, se calcula el volumen filtrado.

Las muestras se colectan en frascos de 500 mL debidamente rotuladas con la estación respectiva, para su preservación se le adiciona Lugol.

Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de N° cel./Litro. (Figura 3).

Figura 3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que son arrastradas por la corriente del río.

5.3.2. **Zooplancton:**

Para colectar zooplancton, se tomó en cuenta las mismas consideraciones que para fitoplancton. Por lo general, las poblaciones de zooplancton se distribuyen en estratos, lo que añade cierta dificultad a la interpretación de los resultados.

Las muestras de zooplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de $10~\mu m$ de abertura de malla. La red fue colocada en el río, durante 20~minutos. Con estos datos y conociendo además el diámetro de la boca de la red planctónica, se calcula el volumen filtrado. Las muestras se colectan en frascos de 500~mL debidamente rotuladas con la estación respectiva,

para su preservación se le adiciona Formalina al 4% y/o alcohol al 96°. Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de Org./m³.

5.4. Muestreo de Bentos

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 31. Metodologías de Muestreo para Bentos Según Standard Methods

Parámetros	Metodología
Macroinvertebrados	APHA-AWWA-WPCF – Standard Methods (Section 10500B – 10500C)
Perifiton	APHA-AWWA-WPCF – Standard Methods (Section 10300B – 10300C)

Fuente: APHA-AWWA-WEF, 2012

5.4.1. Macroinvertebrados Bentónicos:

En cada estación de monitoreo se colectaron muestras biológicas de macroinvertebrados bentónicos, las que se obtuvieron utilizando una RED SURBER con un marco de un área de 30 x 30 cm de sustrato.

Para su recolección se remueve las piedras del fondo del río, lavándolas en contra de la corriente del agua para colectarlas en un frasco con formalina al 4% y/o alcohol a 96°.

En el laboratorio la muestra es limpiada del sustrato para el reconocimiento de las especies y el conteo dado en Org./m².

Valor Indicador de los Macroinvertebrados Bentónicos

Los índices bióticos son una de las maneras más comunes de establecer la calidad biológica de los ríos. Se suelen expresar en forma de un valor numérico único que sintetiza las características de todas las especies presentes. Habitualmente consisten en la combinación de dos o tres propiedades de la asociación: la riqueza de taxa y la tolerancia/intolerancia a la contaminación para los índices cualitativos, y estos junto a la abundancia (absoluta o relativa) para los índices cuantitativos.

La mayor parte de los investigadores señalan que dentro de los grupos faunísticos que son considerados como bioindicadores de la calidad ambiental, los macroinvertebrados acuáticos son los mejores bioindicadores de la calidad del agua (Arenas, 1993; Barbour *et al.*, 1995; Figueroa, 1999; Alonso *et al.*, 2002; Fenoglio et al., 2002; Hynea & Maher, 2003; Cain *et al.*, 2004; Leiva, 2004; Alonso & Camargo, 2005).

Los macroinvertebrados bentónicos se encuentran en todo tipo de ambiente acuático de agua dulce, como ríos o lagunas, donde son importantes para el monitoreo de ese ecosistema acuático en particular (Cummnig & Klug, 1979).

El uso de los macroinvertebrados bentónicos proporciona excelentes señales sobre la calidad del agua, y al usarlos en el monitoreo, puede entender claramente el estado en que ésta se encuentra, algunos de ellos requieren agua de buena calidad para sobrevivir, otros en cambio, resisten, crecen y abundan cuando hay contaminación.

Para estimar la calidad del agua se utilizaron medidas de composición y riqueza. Las medidas de composición y riqueza incluyen número total de especies, número total de individuos, Diversidad de Shannon-Weaver (H'), Equidad de Pielou (J'), Riqueza de especies (d) y %EPT de acuerdo al criterio empleado por Egler (2002).

Índice Ecológico

%EPT (Ephemeroptera + Plecoptera + Trichoptera)

El Índice Biótico es una medida cuantitativa de la diversidad, de especies de bentos, con la información cualitativa sobre la sensibilidad ecológica de taxones individuales en una expresión numérica simple. En este caso se va utilizar el índice EPT que es la suma de la abundancia de individuos de los grupos sensible: Ephemeroptera, Plecoptera y Tricoptera entre la abundancia total de los individuos bentónicos.

Estos insectos son considerados mayormente como organismos de aguas limpias y su presencia generalmente está relacionada a aguas de buena calidad.

De acuerdo al porcentaje observado en las diferentes muestras de la presencia y magnitud de estos grupos indicadores se obtendrá una calificación del estado de conservación del ambiente acuático en estudio, según Roldan (1997).

El análisis de EPT se realizó mediante la utilización de estos tres grupos de macroinvertebrados que son indicadores de la calidad de agua, debido a que son más sensibles a la contaminación. En primer lugar, se coloca en una columna la clasificación de organismos, en una segunda columna la abundancia y una última columna con los EPT presentes.

Posteriormente los EPT presentes se dividen por la abundancia total, obteniendo un valor, el cual se lleva a una tabla (Tabla 32) de calificaciones de calidad de agua que va de muy buena a mala calidad (Carrera & Fierro 2001).

Tabla 32. Calidad de las Aguas según él %EPT

Clase	Índice EPT(%)	Calidad de Agua
I	75 % - 100%	Muy Buena
II	50% - 74%	Buena
III	25% - 49%	Regular
IV	0% - 24%	Mala

Fuente: Carrera & Fierro (2001)

Índices de Diversidad

Índice de diversidad de Shannon-Wiener (H')

Este índice es el más usado por ajustarse mejor a la distribución de los organismos en la naturaleza, es independiente del tamaño de muestra (Roldán, 1992). Esta expresión se acomoda a la distribución normal de las numerosas asociaciones de especies, por lo cual permite la aplicación de métodos estadísticos diversos (Magurran, 1988).

El índice de Shannon – Wiener, se usa en ecología u otras ciencias similares para medir la biodiversidad. Este índice se representa normalmente como H' y se expresa con un número positivo, que en la mayoría de los ecosistemas naturales varía entre 1 y 5. Excepcionalmente puede haber ecosistemas con valores mayores (bosques tropicales, arrecifes de coral) o menores (algunas zonas desérticas). La mayor limitante de este índice es que no tiene en cuenta la distribución de las especies en el espacio. (Tabla 33).

$$H' = \sum_{i=1}^{s} (\mathbf{p}i)(\log_2 pi)$$

Dónde: H'= Índice de Diversidad de Shannon-Wiener

S = Número de especies

pi = Proporción de la abundancia de la especie y del total de la muestra.

Tabla 33. Rangos del Índice de diversidad de Shannon-Wiener (H')

Índices	Tipo de Diversidad
0,0 - 1,5	Poca Diversidad
1,6 – 3,0	Mediana Diversidad
3,1 – 5,0	Alta Diversidad

Índice de Margalef (DMg)

Es una medida utilizada en ecología para estimar la biodiversidad de una comunidad con base a la distribución numérica de los individuos de las diferentes especies en función del número de individuos existentes en la muestra analizada, esenciales para medir el número de especies en una unidad de muestra. (Margalef 1955).

$$DMg = (S - 1) / ln N$$

S = Número de especies

N=Número Total de Individuos.

Tabla 34. Rangos del Índice de biodiversidad de Margalef (DMg)

Índices	Tipo de Biodiversidad
< 2	Baja biodiversidad (en general
	resultado de efectos antropogénicos)
2 a 5	Mediana biodiversidad
> 5	Alta biodiversidad

5.4.2. Fitoplancton Bentónico:

En cada estación de monitoreo se colectaron muestras de fitoplancton bentónico las que se obtuvieron utilizando un área de 10 x 10 cm. de sustrato duro de preferencia de color verde, para proceder al raspado de la superficie, y colocarlo en un frasco con Lugol, para su posterior envío al laboratorio.

Valor Indicador de las Microalgas Bentónicas

El uso de microalgas bentónicas para evaluar la calidad del agua es una práctica habitual en muchos países europeos, y existen abundante bibliografía sobre la capacidad bioindicadora. No obstante, la inmensa mayoría de los estudios realizados se refieren a diatomeas, y existen mucha menos información sobre los restantes grupos de algas.

Entre los índices más utilizados en el estudio de diatomeas como indicadores biológicos, que se han utilizado exitosamente en otros países están a) Índice biológico diatómico (IBD), b) Índice biológico general normalizado (IBGN), c) Índice General Diatómico (IDG), d) Índice Sapróbico (SI). El utilizado para este monitoreo es el Índice General Diatómico (IDG).

$$IDG = \frac{\sum_{j=1}^{j} A_{j} S_{j} V_{j}}{\sum_{j=1}^{n} A_{j} V_{j}}$$

Aj = Abundancia

Sj = Sensibilidad a la polución (1 a 5)

Vj = Valor indicativo de la especie (1 a 3).

Nota: Los valores del I.D.G. van de 1 a 5 en orden decreciente de los niveles de contaminación. Con esta fórmula el valor del índice que obtenemos sólo podrá variar entre 1 y 5, rango establecido para la clasificación de la calidad de las aguas.

Tabla 35. Rangos del Índice General Diatómico (IDG).

Valor	Significado
IDG>4,5	Calidad biológica óptima
4 <idg<4,5< td=""><td>Calidad normal. Polución débil</td></idg<4,5<>	Calidad normal. Polución débil
3,5 <idg<4< td=""><td>Polución moderada. Eutrofización</td></idg<4<>	Polución moderada. Eutrofización
3 <idg<3,5< td=""><td>Polución media. Eutrofización acentuada</td></idg<3,5<>	Polución media. Eutrofización acentuada
2 <idg<3< td=""><td>Desaparición de especies sensibles. Polución fuerte</td></idg<3<>	Desaparición de especies sensibles. Polución fuerte
1 <idg<2< td=""><td>Polución muy fuerte</td></idg<2<>	Polución muy fuerte
IDG=0	La población es considerada como inexistente. Polución tóxica

5.5. Técnicas Multivariadas de Análisis para la Relación entre Comunidades sobre la Población de camarón y Calidad de agua en base a Bio-indicadores.

5.5.1. Análisis de Frecuencias de Tamaños de Camarón de río a lo largo del río Cañete.

Los análisis se realizan en base a histogramas constituidos por frecuencias (o conteos) de individuos ordenados de acuerdo a una escala de tamaños con intervalos de 5 mm.

Por otro lado, se analiza la existencia de patrones de segregación del camarón a lo largo y ancho del río Cañete en relación a variables poblacionales como estado de madurez (juvenil y adulto) y sexo (hembras y macho). Para ello, se diseña una matriz de varias entradas en la cual se consideró las frecuencias de tamaños agrupadas por estaciones de muestreo, sexo, y ancho (margen izquierdo, cauce central, margen derecho).

El método utilizado para este análisis es el Análisis Log-linear de tablas de frecuencias, el cual permite el análisis de tablas de frecuencia de múltiples entradas mediante modelos de interacción de primer, segundo, tercer orden, etc., hasta encontrar el mejor modelo que ajuste a los datos observados y que incluya el menor número de interacciones necesarias para explicar la variabilidad observada de los mismos.

5.5.2. Análisis del efecto ambiental sobre la distribución de tamaños.

El método de análisis aplicado es el de Análisis Discriminante (AD) de tipo Forward, es decir se irán incorporando paso a paso solo aquellas variables que tengan un efecto significativo discriminatorio sobre los grupos analizados, bajo las consideraciones de un nivel de significación de entrada (F-to enter) igual 1 y de remoción (F to remove) igual a 0.

Las variables ambientales consideradas en el AD: Temperatura ambiental (°C), Temperatura del agua (°C), pH, Oxígeno disuelto (mg/L), Dureza (mg/L), Transparencia (NTU), Caudal (m³/s), CO₂ y Nitritos.

5.5.3. Análisis de Calidad de Agua en base a Indicadores Biológicos.

Se utilizarán los métodos de Análisis de Componentes Principales (ACP) para analizar y caracterizar las estaciones de muestreo en relación a los parámetros fisicoquímicos. Luego se utilizará el método de Análisis de Correspondencia (AC) para el análisis de la abundancia de los indicadores biológicos (macroinvertebrados bentónicos y perifiton) y la relación con las estaciones de muestreo. Para finalizar, se empleará el Análisis de Correspondencia Canónica (ACC) para evaluar la relación entre los variables ambientales, la abundancia de los indicadores biológicos y las estaciones de muestreo. Las matrices son estandarizadas con la función log (x+1). Las variables ambientales consideradas en el presente análisis serán: temperatura ambiental (°C), temperatura del agua (°C), pH, oxigeno, dureza, transparencia, velocidad, nitritos, CO2 y caudal.

5.5.4. Análisis del Efecto Ambiental sobre el Camarón de río.

El método emplea la exploración de las relaciones entre la abundancia relativa (ind/m²) del camarón de río, los parámetros fisicoquímicos (T° del agua, oxígeno disuelto, dureza, nitritos, pH, CO₂, transparencia, caudal y velocidad) y los indicadores biológicos (macroinvertebrados bentónicos y perifiton) para cada una de las estaciones evaluadas en el río Cañete, siendo denominado mediante el Análisis de Correspondencia Canónica (CCA).

Previo a los análisis se realizarán ajustes en la base de datos que se estandarizarán mediante la matriz con la función log(x+1).

5.6. Personal de Monitoreo

CELEPSA cuenta con el personal capacitado y experimentado en el manejo de la especie por más de 15 años, para realizar la recolección de muestras, así como el análisis interpretativo de los resultados con el medio ambiente, producto de las actividades que se realizan en la ejecución del Proyecto.

El presente Informe de monitoreo biológico de camarón de río, se ha logrado mediante un Coordinador del Monitoreo que tiene a su mando al personal capacitado para realizar la recolección de muestras y está integrado de acuerdo a un esquema de trabajo.

Figura 4. Personal colaborador en el monitoreo - Julio 2019.

VI. RESULTADOS DE LA EVALUACIÓN DE LAS ESTACIONES DE MONITOREO BIOLÓGICO

El río Cañete es uno de los ríos más importantes de la costa central peruana, con una longitud total aproximada de 209 kilómetros. El río Cañete presenta un caudal anual considerable y es el hábitat de importantes recursos hidrobiológicos que son utilizados por los pobladores. Entre estos recursos destacan la *Oncorhynchus mykiss* "trucha", *Orestia sp.* "Chalguita", el *Basilichthys archaeus* "pejerrey" y el *Cryphiops caementarius* "camarón de río".

La primera y segunda especie se distribuye en la cuenca alta, mientras que las otras son más abundantes en la cuenca media - baja. La distribución de estas especies en zonas definidas de la cuenca, responde a diversos factores, entre los que se encuentran la geomorfología del terreno y las interacciones entre parámetros físicos, químicos y biológicos del agua.

Las comunidades de camarón del río (*Cryphiops caementarius*) Cañete tienen importancia biológica, porque su presencia suele ser indicador de la existencia de condiciones favorables, en términos bioecológicos, para su establecimiento, mientras las condiciones físicas y químicas de estos ambientes acuáticos estén dentro de los rangos habituales para ríos (aguas con buena oxigenación y pH relativamente neutro-básico) estas especies tendrán las condiciones adecuadas para continuar con sus ciclos biológicos. Por otro lado, su importancia económica y cultural hacen de él, el recurso de pesca económica en el sur chico.

6.1. Evaluación del Camarón de río (Cryphiops caemenatrius)

Cabe destacar que los resultados serán comparados principalmente con monitoreos anteriores efectuados en el mes de octubre por observar que la especie presenta determinadas características en periodos similares.

6.1.1. Tamaño de muestra

El muestreo aleatorio es una técnica para obtener muestras representativas de la población, que asegure una probabilidad de los elementos que pertenezcan a la población en dicho momento. Se trabajó a un nivel de significancia del 95% en las estaciones de muestreo, obteniéndose los siguientes resultados en dicho monitoreo. (Tabla 36).

Tabla 36. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de Significancia del 95%

ESTACIONES	N	95%	ESTACIONES	N	95%
Pampilla	1754	70	Machuranga	13	11
Lucumo	889	68	San Juanito	1	1
Fortaleza	537	64	Piedra Coca	0	0
Alto Hungara	485	64	La Tolva	4	4
Concon	296	59	Tacuasimonte	2	2
Caltopa	329	60	Huayllampi	4	4
Socsi	198	54	Canchan	0	0
Paullo	326	60	Escarilla	1	1
Lunahuana	188	53	Chavin	12	10
Catapalla	43	27	Chicchicay	0	0
Jacaya	70	36	Capillucas	0	0
Pacaran	16	13	Putinza	0	0
Huagil	27	20	Calachota	0	0
Zuñiga	26	19			

Elaborado: Celepsa - Julio 2019

6.1.2. Proporción de Sexos

Para el presente año los machos predominaron desde el estrato 0 hasta el 1 100 m.s.n.m., mientras que las hembras de los 1 100 a los 1 700; encontrándose finalmente en una proporción de 1,44:1, con predominio aun de los machos, es decir las machos conforman el 60,37% de la población y las hembras el 39,63%, características típicas de la distribución sexual de la especie en el presente periodo (Tabla 37).

En todos los estratos hay un incremento en la distribución de los machos con respecto al mes de julio 2019.

Tabla 37. Número de Machos y Hembras, Porcentaje (%) y Proporción Sexual por estrato altitudinal

ESTRATO	PORCE	NTAJE %	PROPORCION SEXUAL			
	MACHOS	HEMBRAS	MACHOS	HEMBRAS		
00-100	45,59	54,41	0,84	1		
100-300	66.10	33,90	1,95	1		
300-500	69,45	30.55	2,27	1		
500-700	79,17	20,83	3,80	1		
700-900	85,00	15,00	5,67	1		
900-1100	80,00	20,00	4,00	1		
1100-1300	40,00	60,00	0,67	1		
1300-1500	16,67	83,33	0,20	1		
1500-1700	0,00	0,00	0,00	0		
TOTAL	60,37	39,63	1,52	1		

En la distribución de machos y hembras para julio 2019, comparándolo con julio 2018 podemos observar lo siguiente:

- 00 100 m.s.n.m., en machos existe aumento de 60,18% y en hembras una disminución del 14.87%.
- 100 300 m.s.n.m., en machos existe un incremento del 59,75% y en hembras un incremento del 57,81%.
- 300 500 m.s.n.m., en machos existe una disminución de 2,87% y en hembras un incremento del 49,4%.
- 500 700 m.s.n.m., en machos existe una disminución de 11,05% y en hembras una disminución de 4,70%.
- 700-900 m.s.n.m., en machos existe un incremento de 1,26% y en hembras un incremento de 0,66%.
- 900- 1 100 m.s.n.m., en machos existe una disminución de 4,36% y en hembras un incremento de 1,85%.
- 1 100 1 300 m.s.n.m., en machos existe una disminución de 0,76% y en hembras un incremento de 0,42%.
- 1 300 1 500 m.s.n.m., en machos existe una disminución de 2,14% y en hembras un incremento de 8,94%.
- 1500 1700 m.s.n.m., en machos y hembras no hubo disminución ni incremento.

La nueva distribución por estratos de los machos y hembras en el río Cañete, se observa que la población de hembras se acerca a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico, debido a que dicho sector ha mejorado su habitabilidad para el crecimiento de las hembras, razón por la que ellas son las que sobreviven y se desarrollan óptimamente en dichos sectores (Tabla 38).

Tabla 38. Porcentaje de machos y hembras desde julio 2007 a julio 2019

M A2-	PORCE	NTAJE %
Mes - Año	MACHOS	HEMBRAS
Jul-07	66,95	33.05
Jul-08	50,89	49.11
Jul-09	58,37	41.63
Jul-10	54,99	45.01
Jul-11	59.19	40.81
Jul-12	60,01	39.99
Jul-13	61,09	38.91
Jul-14	58,22	41.78
Jul-15	63,49	36.51
Jul-16	64,49	35.51
Jul-17	59.55	40.45
Jul-18	49,25	50.75
Jul-19	60,37	39,63

6.1.2. Madurez Gonadal

La determinación de la proporción de sexos y la serie de cambios en la fase de madurez que ocurren durante el año son de enorme importancia para adquirir un conocimiento completo de la biología de una población explotada. En el caso de algunas especies puede ser necesario mantener de forma rutinaria programas para analizar la proporción de sexos y las fases de madurez de los individuos.

Para julio 2019, se observa lo siguiente:

Machos

- El 45,68% se encuentran en estadio I (Inmaduro)
- El 53,49% se encuentran en estadio II (Inactivos o reposo)
- El 0,83% se encuentra en estadio III (Intermedio)

Hembras

- El **81,99**% se encuentra en estadio I (Inmaduro)
- El 18,01% se encuentran en estadio II (Inactivos o reposo))

Indicándonos, para los machos, que el mayor porcentaje de la población se encuentra en **estadio Inactivo o de Reposo** y para las hembras, el mayor porcentaje de la población se encuentra en **estadio Inmaduro.** Por lo tanto, para esta etapa de evaluación los machos representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan. Estos serán los primeros productores reclutas de primavera. (Tabla 39).

Tabla 39. Madurez gonadal de machos y hembras por estratos altitudinales – julio 2019

			MAC	HOS			HEMBRAS							
ESTRATO		ESTADIO GONADAL						ESTADIO GONADAL						
_	0	I	II	III	IV	V	0	I	II	III	IV	V		
00-100	0	91028	72363	548	0	0	0	154294	41349	0	0	0		
100-300	0	88619	118163	1769	0	0	0	89594	17364	0	0	0		
300-500	0	82727	101737	1960	0	0	0	72144	9848	0	0	0		
500-700	0	10769	21262	529	0	0	0	7746	822	0	0	0		
700-900	0	2793	8533	197	0	0	0	1387	647	0	0	0		
900-1100	0	0	760	10	0	0	0	0	192	0	0	0		
1100-1300	0	0	142	5	0	0	0	0	220	0	0	0		
1300-1500	0	0	187	13	0	0	0	0	1001	0	0	0		
1500-1700	0	0	0	0	0	0	0	17226	5061	0	0	0		
TOTAL	0	275936	323148	5032	0	0	0	325165	71444	0	0	0		
TOTAL %	0,00	45,68	53,49	0,83	0,00	0,00	0,00	81,99	18,01	0,00	0,00	0,00		

Al comparar los estadios gonadales de machos y hembras con julio 2018 (Tabla 40 y Figura 5):

Tabla 40. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de julio del 2007 a julio 2019

	% MACHOS ESTADIO GONADAL						% HEMBRAS					
Mes - Año							ESTADIO GONADAL					
	0	I	II	III	IV	v	0	I	II	III	IV	V
Jul-07	0,00	31,79	62,42	5,79	0,00	0,00	70,45	29,55	0,00	0,00	0,00	43,28
Jul-08	0,00	48,11	45,08	6,80	0,00	0,00	83,16	16,84	0,00	0,00	0,00	0,00
Jul-09	0,00	6,09	93,70	0,20	0,00	0,00	7,79	91,48	0,00	0,73	0,00	0,00
Jul-10	1,99	84,97	12,82	0,22	0,00	1,36	96,55	2,09	0,00	0,00	0,00	2,29
Jul-11	0,00	53,72	45,92	0,36	0,00	0,00	0,00	73,24	26,60	0,16	0,00	0,00
Jul-12	0,00	67,44	32,44	0,12	0,00	0,00	0,00	91,18	8,82	0,00	0,00	0,00
Jul-13	0,00	62,13	37,34	0,47	0,06	0,00	0,00	84,87	14,88	0,06	0,20	0,00
Jul-14	0,00	59,86	40,09	0,05	0,00	0,00	0,00	94,39	5,46	0,15	0,00	0,00
Jul-15	0,00	78,37	21,17	0,46	0,00	0,00	0,00	96,03	3,72	0,25	0,00	0,00
Jul-16	0,00	60,84	39,16	0,00	0,00	0,00	0,00	84,98	13,87	0,49	0,66	0,00
Jul-17	0,00	53,93	46,02	0,00	0,06	0,00	0,00	85,04	13,60	0,48	0,88	0,00
Jul-18	0,00	24,87	64,51	10,62	0,00	0,00	0,00	44,43	49,80	5,77	0,00	0,00
Jul-19	0,00	45,68	53,49	0,83	0,00	0,00	0,00	81,99	18,01	0,00	0,00	0,00

Elaborado: Celepsa - Julio 2019

Se observa lo siguiente:

- Estadio I: Incremento de machos en un 20,81% y en hembras un incremento 37,56%.
- Estadio II: Disminución de machos en un 11,02% y en hembras una disminución de 31,79%.
- Estadio III: Disminución de machos en un 9,79% y en hembras una disminución de 5,77%.

Estos primeros resultados nos indican que las actividades de descolmatación y limpieza del lecho del rio Cañete en la zona baja durante el segundo trimestre del año, ha generado no solo una disminución del recurso si no una brecha en el desarrollo de su población en general, habiendo

afectado fuertemente a la población pequeña y en un futuro un periodo de disponibilidad de recurso para la comercialización.

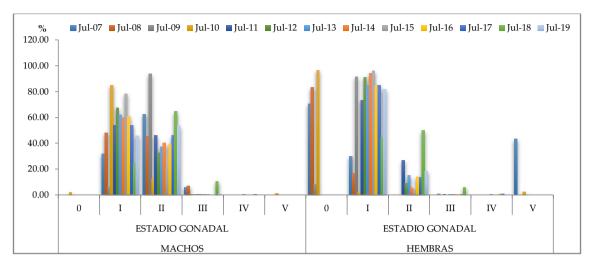


Figura 5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos anuales

6.1.3. Composición de Tallas

Se evaluó que el 25,52% de la abundancia y el 62,66% de biomasa estaría disponible de ser capturada en los próximos meses, considerando la finalización de época de veda.

Comparando julio 2018 a julio 2019, la biomasa incremento en un 2,71% y la Abundancia aumento en un 2,11%, lo que nos indica una relación inversa entre la biomasa y abundancia para este período.

Entre la biomasa comercial destacan las tallas 74,5 a 104,5 mm, representando el 56,99% (Tabla 41).

Tabla 41. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud

INITEDMALO	NTERVALO MEDIAS			BIOMASA			ABUNDANCIA			
INTERVALO	MEDIAS	Kg	%	Kg	%	N °Ind.	%	Nº Ind.	%	
20-29	24,5	11,34	0,15			22675,22	2,27			
30-39	34,5	67,27	0,90			73699.08	7,36			
40-49	44,5	336,75	4,51	2730,10	36,57	159613.21	15,95	739672,96	73,91	
50-59	54,5	1047,34	14,03			296217,79	29.60			
60-69	64,5	1267,40	16,98			187467,66	18,73			
70-79	74,5	1196,02	16,02			109426,8	10,93	,		
80-89	84,5	1104,38	14,79			67834,49	6,78			
90-99	94,5	961,48	12,88			41810,09	4,18			
100-109	104,5	1045,66	14,01	4735,53	63,43	32335,90	3,23	261051,06	26,09	
110-119	114,5	281,60	3,77			6965,12	0,70			
120-129	124,5	128,10	1,72			2413,10	0,24			
130-139	134,5	18,29	0,25			265,89	0,03			
140-149	144,5	0,00	0,00			0,00	0,00			

_			7465,63	100,00	1000724	100.0	
	160-169	164,5	0,00	0,00	0,00	0,00	
	150-159	154,5	0,00	0,00	0,00	0,00	

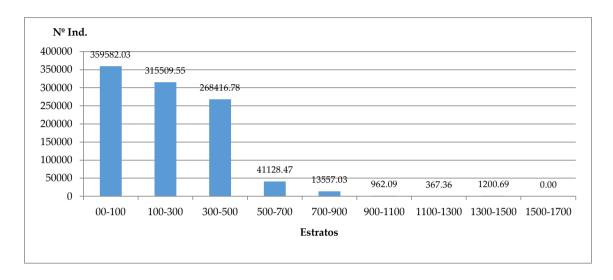


Figura 6. Distribución Poblacional por estratos – julio 2019

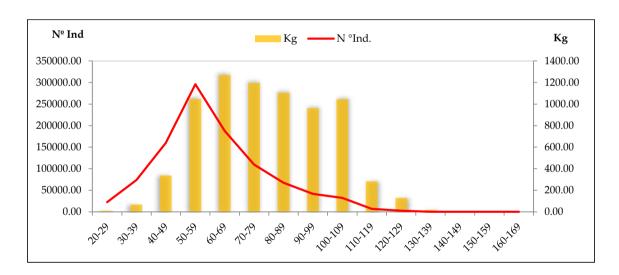


Figura 7. Biomasa y Abundancia tallas - julio 2019

6.1.4. Abundancia y Biomasa

La abundancia absoluta estimada para toda el área evaluada es de **1 000 724 individuos**, con una biomasa absoluta estimada de **7 465,63 Kg**, comparándolo con los resultados obtenidos en julio 2018, hay una disminución en la biomasa de 84 kg. y una disminución en la abundancia de 29 365 individuos (Figuras 8 y 9).

En el presente monitoreo se obtuvo una **abundancia relativa de 0,38 ind/m²** y una **biomasa relativa de 2,83 g/m²** (Tabla 41). En relación a julio 2018 (0,53 ind/m² y 3,69 g/m²), observamos disminución de 0,15 ind/m² con respecto a la abundancia relativa y de 0,86 g/m² con respecto a la biomasa relativa.

Abundancia Relativa

- La mayor abundancia relativa se presentó en el estrato 0 100 m.s.n.m. (Pampilla, Lúcumo y Fortaleza) con 2,28 ind/m².
- Y como segundo más abundante el estrato de 100 300 m.s.n.m. (A. Húngara, Concón y Caltopa) con 0,80 ind/m².

Biomasa Relativa

- La mayor biomasa relativa se presentó en el estrato 00 100 m.s.n.m. (Pampilla, Lúcumo y Fortaleza) con 11,92 g/m².
- Y seguido como segundo más abundante el estrato de 100 300 m.s.n.m. (A. Húngara, Concón y Caltopa) con 6,15 g/m². (Tabla 42)

El impacto generado primero por los huaycos extraordinarios en Lunahuana del 2017 durante la temporada de reproducción del camarón mermo una parte de la población que sumado a los trabajos de descolmatación y limpieza de cause a finales del 2017 y principios del 2018 temporada de reproducción - sin guardar las medidas de mitigación adecuadas, dio como consecuencia una no recuperación de la población y biomasa para el 2019, observando una caída gradual, siendo el Caudal Ecologico el más afectado al no haberse repoblado por la falta de juveniles el 2018, descendiendo en un 92% su población y un 86 % su biomasa respecto al 2017.

El sector de caudal ecológico cuenta con áreas habitables para el camarón de rio, pero la baja población y la no continuidad en los reclutantes, no permitió la existencia de poblaciones migradoras continuas, generando una gran brecha hacia las zonas medias que se asientan más por la acción de la actividad extractiva durante la temporada de oficial de pesca.

Con el incremento del caudal natural en el rio Cañete durante el periodo de estiaje, debido al embalse Paucarcocha, los trabajos de control y vigilancia, así como de extracción responsable por parte de los camaroneros y la reactivación del repoblamiento hacia el Caudal Ecológico para ayudar a su rápida distribución en el 2019, se podría recuperar gradualmente la población para la temporada del 2020.

Evaluando los resultados totales del presente monitoreo julio 2019 y comparándolo con julio 2018 y 2017 nos encontramos con una respuesta negativa del recurso ante actividades antrópicas sin manejo ambiental, se espera una recuperación pronta con el desarrollo del Programa de Sostenibilidad del camarón, que se modifica según la necesidad y que ha demostrado ser clave para mitigar impactos ya sea por actividad antrópica o natural en el tiempo, por lo que se espera que los efectos del presente año 2019, sean superados y se logren recuperar las poblaciones con expectativas de crecimiento para el año 2020.

Tabla 42. Abundancia y Biomasa por estrato altitudinal

	Altitud (m.s.n.m.)	Estaciones de Monitoreo		ABUNDANCIA		BIOMASA	
Sectores Evaluados			Área (m²)	Relativa	Absoluta	Relativa	Absoluta
				(Ind/m²)	(N)	(g/m²)	(kg)
		Pampilla					
BOCA DE RIO	00 -100	Lucumo	157 625,00	2,28	359 582	11,92	1 878,14
		Fortaleza					
	•	A.Hungara	•	•	•	•	•
ALTO HUNGARA CALTOPA	100-300	Concon	395 416,67	0,80	315 510	6,15	2 431,94
		Caltopa					
	•	Socsi	•	•			
SOCSI-LUNAHUANA	300-500	Paullo	520 916,67	0,52	268 417	4,49	2 340,39
		Lunahuana					
	•	Catapalla	•	•	•	•	•
CATAPALLA - PACARAN	500-700	Jacayita	429 166,67	0,10	41 128	1,21	518,69
		Pacaran					
		Huagil					
HUAGIL - MACHURANGA	700-900	Zuñiga	291 375,00	0,05	13 557	0,69	200,48
		Machuramga					
		San Juanito					
SAN JUANITO - LA TOLVA	900-1100	Piedra Cocca	277 083,33	0,00	962	0,14	37,50
		La Tolva					
		Huallampi					
HUAYLLAMPI - CANCHAN	1100-1300	Tacuasimonte	88 166,67	0,00	367	0,19	16,68
		Canchan					
		Escarilla					
ESCARILLA-CHICCHICAY	1300-1500	Chavin	133 000,00	0,01	1 201	0,31	41,82
		Chicchicay					
		Capillucas					
CAPILLUCAS - CALACHOTA	1500-1700	Putinza	344 166,67	0,00	0	0,00	0
-		Calachota					
TOTAL			2 636 916,67	0,38	1 000 724	2,83	7 465,63

Elaborado: Celepsa - Julio 2019

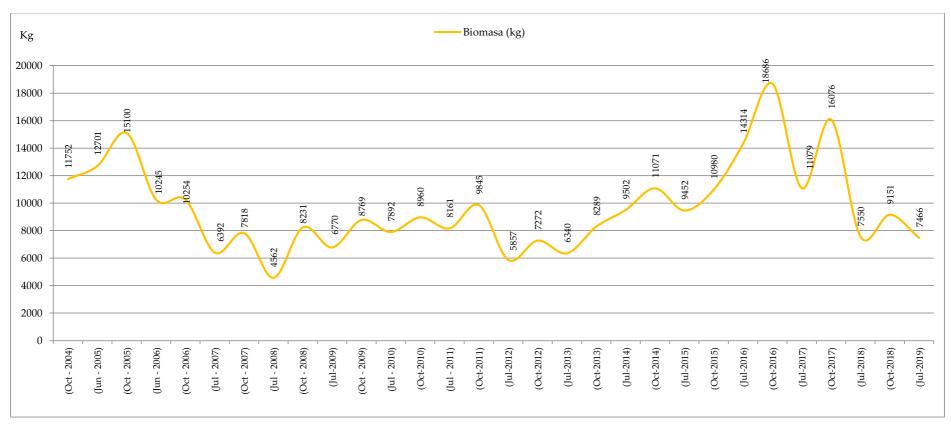


Figura 8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a julio 2019

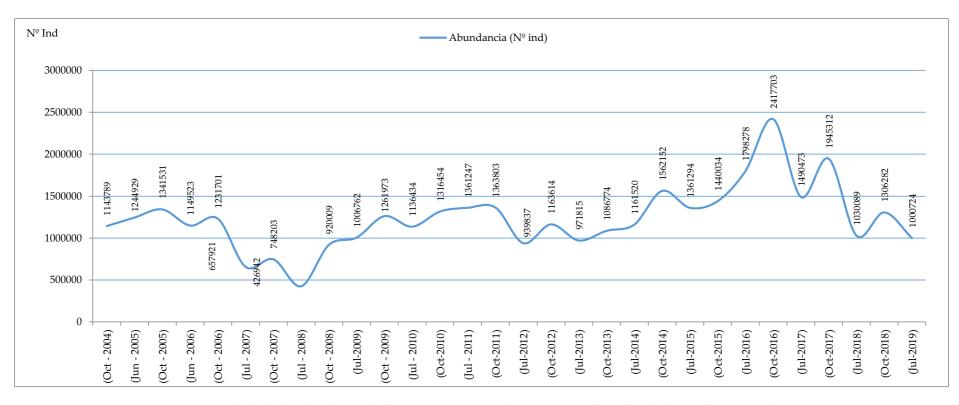


Figura 9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a julio 2019.

VII. RESULTADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LAS ESTACIONES DE MONITOREO.

Los parámetros físico-químicos evaluados en las estaciones de monitoreo fueron los siguientes: temperatura, pH, oxígeno disuelto, dureza, CO₂ y Nitritos. Los resultados registrados en cada estación de monitoreo se presentan en el Tabla 43.

Tabla 43. Valores de los parámetros físico químicos Julio 2019

Altitud (m.s.n.m.)	Estaciones	T. Amb °C	T. Agua °C	Nitrito	pН	Oxígeno (mg/L)	CO ₂ (mg/L)	Dureza (mg/L)	Turbidez (NTU)
00 -100	Pampilla	19,7	18,5	0	7,55	8	10	239,4	1,45
	Lucumo	18,2	19,5	0	7,45	8	10	222,3	1,55
	Fortaleza	20,8	19,1	0	7,59	9	5	222,3	1,33
100-300	Alto Hungara	24,8	19,4	0	7,47	8	5	222,3	1,39
	Concon	21,8	19,6	0	7,42	8	5	222,3	1,46
	Caltopa	19,5	17,7	0	7,57	8	10	222,3	1,36
300-500	Socsi	20,7	18,5	0	7,50	8	5	273,6	1,42
	Paullo	23,5	19,8	0	7,43	9	10	222,3	1,30
	Lunahuana	18,6	19,9	0	7,48	8	5	205,2	1,35
500-700	Catapalla	25,3	21,0	0	7,55	8	10	205,2	0,91
	Jacayita	25,6	19,8	0	7,51	9	10	256,5	1,00
	Pacaran	20,5	18,4	0	7,55	8	10	222,3	1,27
	Huagil	17,0	17,3	0	7,63	8	10	222,3	1,11
700-900	Zuñiga	25,3	17,4	0	7,58	9	10	205,2	0,88
	Machuranga	25,2	18,9	0	7,50	9	15	222,3	1,29
	San Juanito	27,9	21,7	0	7,50	9	5	171,0	1,27
900-1100	Piedra Coca	28,0	21,7	0	7,62	9	10	188,1	0,68
	La Tolva	23,7	19,7	0	7,54	9	10	205,2	1,05
	Huallampi	24,1	17,6	0	7,47	7	10	188,1	0,98
1100-1300	Tacuasimonte	28,1	21,4	0	7,33	7	10	205,2	0,94
	Canchan	28,0	21,0	0	7,39	8	15	222,3	1,40
1300-1500	Escarilla	27,4	18,1	0	7,42	9	15	222,3	0,97
	Puente Chavín	19,3	18,0	0	7,52	9	15	222,3	0,79
	Chichicay	27,0	16,8	0	7,45	6	10	256,5	1,68
1500-1700	Capillucas	26,6	17,2	0	7,43	7	10	256,5	1,54
	Puente Putinza	29,0	16,2	0	7,50	8	10	256,5	1,84
	Calachota	22,3	14,8	0	7,47	8	5	273,6	1,87

Elaborado: Celepsa - Julio 2019

7.1. Temperatura (°C):

La Temperatura es un factor abiótico que regula procesos vitales para los organismos vivos, así como también afecta las propiedades químicas y físicas de otros factores abióticos en un ecosistema.

La temperatura rige algunos parámetros físicos, químicos y biológicos, tales como la evaporación y la solubilidad de los gases. Dentro de los biológicos están los procesos metabólicos como la respiración, nutrición, actividad de las bacterias en la descomposición de la materia orgánica, etc. de ahí la necesidad de conocer y evaluar los cambios de temperatura del agua. Welch (1952).

Es uno de los parámetros físicos más importantes en el agua, pues por lo general influye en el retardo o aceleración de la actividad biológica, la absorción de oxígeno, la precipitación de compuestos, la formación de depósitos, la desinfección y los procesos de mezcla, floculación, sedimentación y filtración. Múltiples factores, principalmente ambientales, pueden hacer que la temperatura del agua varíe continuamente.

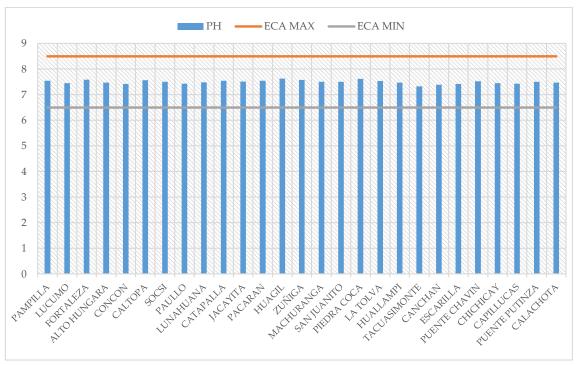
En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo osciló entre un máximo en 21,70 °C y como mínimo 14,80 °C. (Figura 10 y 11).



Figura 10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo julio 2019

Figura 11. Comparativo de registro de temperatura (C°) del agua, desde julio 2007 a julio 2019

7.2. pH (UpH):


Este valor, expresa la concentración de iones hidrógeno en el agua y es la expresión de las características ácidas o básicas que esta presenta. Su escala varía entre 0 y 14, siendo el punto 7, el denominado "neutro". Por debajo de 7, los valores serán ácidos y por encima de dicho valor, básicos. En su gran mayoría, el pH de las aguas se equilibra por medio de un sistema de carbonato-bicarbonato y abarca valores que van desde 5,0 hasta 9,0; existiendo algunas excepciones. Para la mayor parte de los animales acuáticos, el valor óptimo de pH en referencia a su crecimiento y salud, se sitúa en el rango de 6,5 a 9,0. La exposición a un pH extremo puede ser estresante o letal. El pH controla una gran variedad de reacciones de equilibrio (por ejemplo, las reacciones de amoníaco y nitritos e influye también en la toxicidad de metales como el cobre, cadmio, zinc y aluminio).

Respecto al parámetro pH las concentraciones registradas oscilaron como máximo en **7,63 UpH** y como mínimo en **7,33 UpH** (Figura 12 y 13). De las estaciones en el presente monitoreo, se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6.5 a 8.5).

El pH de un cuerpo de agua puede variar a lo largo de un amplio rango de valores, dependiendo de factores del ambiente acuático:

Intrínsecos (Estratificación y mezcla del sistema acuático; Evaporación; La intensidad de procesos biológicos tales como fotosíntesis, respiración y actividades de descomposición de materia orgánica).

Extrínsecos (Composición de: suelos adyacentes, depósitos superficiales y lecho rocoso; Fuentes de contaminación: drenaje ácido de minas, precipitación ácida; Presión parcial de CO₂ en la atmósfera y la temperatura).

Figura 12. Registro del pH del agua, por estratos en el monitoreo julio 2019

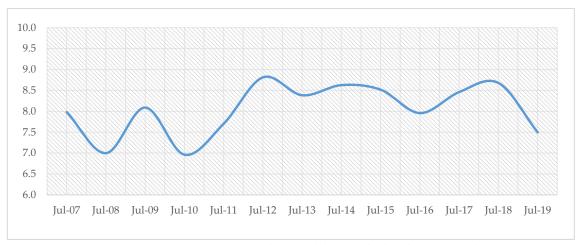


Figura 13. Comparativo de registro de UpH del agua, desde julio 2007 a julio 2019

7.3. Oxígeno (mg/L):

Es la variable química considerada crítica en el cultivo de peces y por lo tanto la más importante y sus concentraciones requieren de un monitoreo continuo en acuicultura en varios tipos de sistemas. El oxígeno disuelto (OD) en el agua se encuentra relacionado íntimamente a la temperatura (según la ley de gases) de tal forma que, a mayor temperatura, este gas será menor y a menor temperatura, su concentración será mayor. La presión barométrica y la altura también influyen directamente sobre su concentración.

El nivel de oxígeno disuelto presente en un sistema de acuicultura es el parámetro más importante en la calidad del agua. Si no existe una adecuada concentración de oxígeno disuelto los organismos pueden ser vulnerables a enfermedades y parásitos, o morir por hipoxia (Salazar, 2001).

Respecto al Oxígeno Disuelto promedio (Figura 14 y 15), las concentraciones registradas en la presente evaluación oscilaron en un máximo de 9,0 mg/L y la mínima en 6,00 mg/L, encontrándose a los valores del presente monitoreo normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥5).

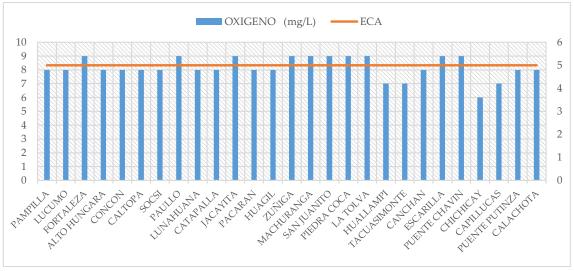


Figura 14. Registro del oxígeno en el agua, por estratos en el monitoreo julio 2019

Figura 15. Comparativo de registro de oxígeno (mg/L) del agua, desde julio 2007 a julio 2019

7.4. Dureza (mg/L):

La dureza total o general se define como la concentración de iones, básicamente calcio y magnesio y se expresa como mg/L de carbonato de calcio equivalente (Rodríguez & Anzola, 2001).

Respecto a la dureza promedio, las concentraciones registradas en la presente evaluación oscilaron en un máximo de 273,60 mg/L y la mínima en 171,00 mg/L, encontrándose a los valores del presente monitoreo en una clasificación de agua Dura (Figura 16 y 17). Los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio mientras que en aguas muy blandas suelen aparecer deficiencias en minerales y se advierte un crecimiento pobre.

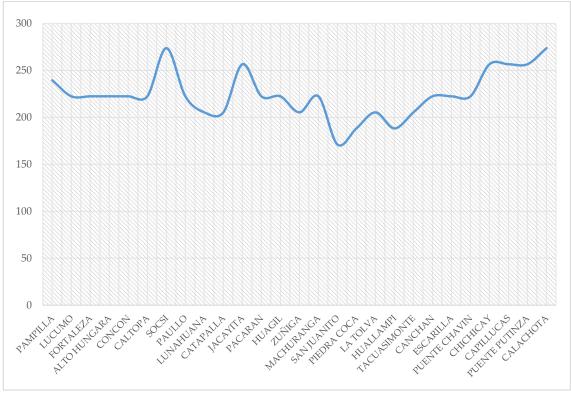


Figura 16. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo julio 2019

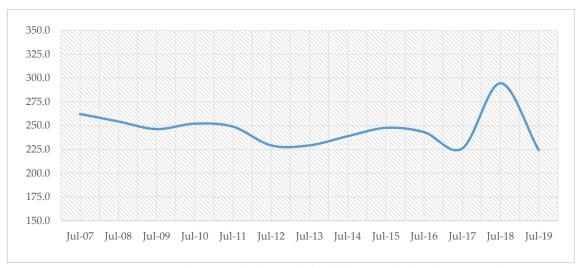


Figura 17. Comparativo de registro de dureza (mg/L) del agua, desde julio 2007 a julio 2019

7.5. CO_2 (mg/L):

El anhídrido carbónico es un gas muy soluble en agua, aunque su concentración pura sea baja. La mayor parte de su producción en un sistema acuícola, proviene de la respiración de los propios animales en cultivo y de la descomposición de la materia orgánica que existe en el sistema. Su medida se efectúa químicamente en laboratorio.

La acumulación de CO₂ en el agua indica muchas veces, una cesación del proceso fotosintético en el agua, en estas circunstancias, no habrá producción de oxígeno por el fitoplancton por ende no habrá oxígeno para los organismos en el agua.

Una alta concentración de CO₂ son comunes cuando existe una floración exagerada de algas en el medio acuático, si ocurre una mortalidad de estas algas/plantas es provocado por su alta concentración en el agua y por una deficiencia de oxígeno por fotosíntesis y liberación de este CO₂ por el proceso de descomposición de las algas/plantas muertas.

El CO₂ promedio (Figura 18 y 19), osciló en la presente evaluación con un máximo de **15 mg/L** y la mínima con **5 mg/L**.

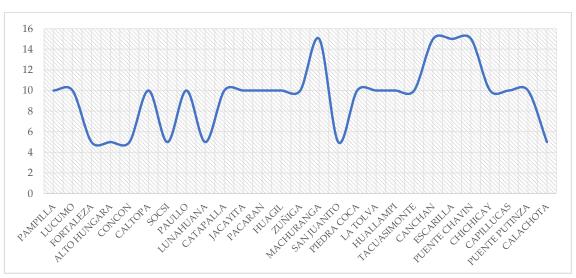


Figura 18. Registro de CO2 (mg/L) en el agua, por estratos en el monitoreo julio 2019

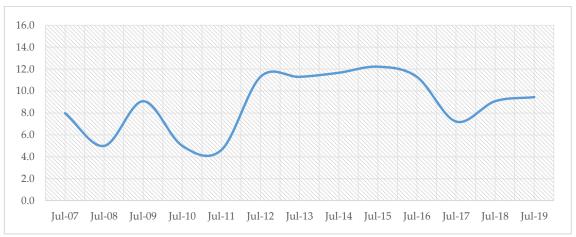


Figura 19. Comparativo de registro de CO2 (mg/L) del agua, desde julio 2007 a julio 2019

7.6. Turbidez (NTU):

Al propagarse en un medio acuoso, la luz se extingue por fenómenos de absorción y dispersión. Ya el agua pura interacciona con la luz y contribuye a su extinción, pero si consideramos además las sustancias que se encuentren disueltas y las partículas en suspensión, podemos imaginarnos que los sistemas acuáticos presentaran una zona iluminada en su superficie, tornándose cada vez más oscura en función del aumento de la profundidad, el color y turbidez del agua. Aguas con aspecto barroso (achocolatado) obtiene esa coloración por la suspensión de sedimentos por acción del viento, corriente, o por aportes externos. Entre los últimos, la erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas.

Para el presente monitoreo la Turbidez osciló entre 1,87 NTU como máximo y 0,68 NTU como mínimo. (Figura 20).

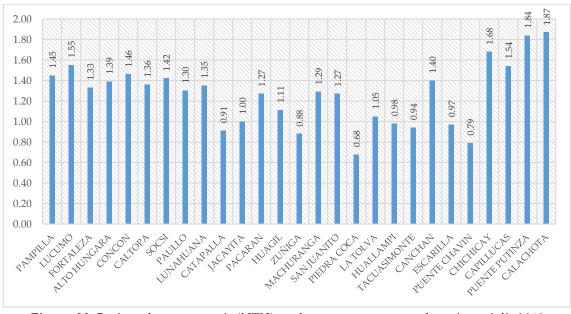


Figura 20. Registro de transparencia (NTU) en el agua, por estratos en el monitoreo julio 2019

VIII. RESULTADOS DE LA EVALUACIÓN DEL PLANCTON

El plancton es muy importante ya que constituye la unidad básica de producción de materia orgánica en los ecosistemas acuáticos. Así, los componentes vegetales del plancton son capaces de acumular energía lumínica solar en forma de componentes químicos energéticos a merced de la fotosíntesis, además el oxígeno producido representa una parte sustancial para los organismos acuáticos. Por lo que las zonas de mayor riqueza pesquera en el mundo son las zonas donde el plancton es abundante.

8.1. Muestreo Biológico

Las muestras biológicas obtenidos fueron empleando redes de nylon, para fitoplancton y zooplancton.

8.2. Fitoplancton

Las especies predominantes de fitoplancton en todos los puntos de muestreo pertenecen a la División Bacillariophyta (comúnmente llamadas diatomeas), presentando 2 283 cel/L (78,4%), el segundo grupo dominante fueron las Chlorophytas, con 515 cel/L (17,7 %) y el tercer grupo fueron las Cyanobacterias con 113 cel/L (3,9 %) como se puede observar en la Figura 21.

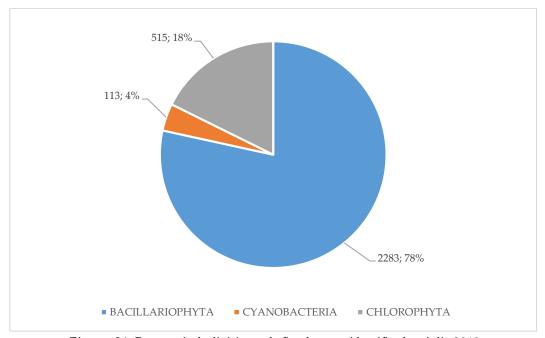
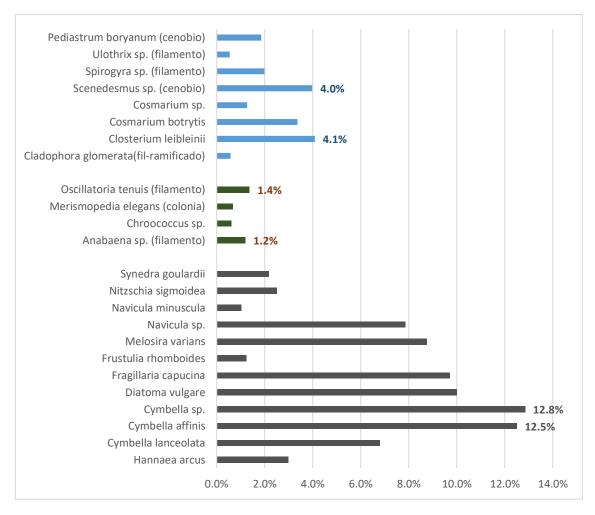



Figura 21. Porcentaje de divisiones de fitoplancton identificado – julio 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 22), el phyllum con mayor presencia es Bacillariophytas, siendo *Cymbella affinis* (12,80%) especie con mayor abundancia relativa, seguida por *Cymbella sp.* (12,50%).

Figura 22. Abundancia relativa (%) de las especies de fitoplancton en las estaciones muestreadas - julio 2019

8.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron **24 especies de algas** pertenecientes a tres divisiones: **Bacillariophyta**, **Cyanobacterias y Chlorophyta**. La abundancia total registrada en las 18 estaciones de muestreo fue de 2 911 células/L, teniendo mayor importancia en riqueza de especies las diatomeas (Figura 23).

Según la composición taxonómica encontrada, la mayor presencia de la división Bacillariophytas es considerada normal dentro de los ecosistemas acuáticos (Acleto y Zuñiga, 1998). Las algas de la división Chlorophyta son también importantes en riqueza y abundancia, lo cual refleja una buena productividad primaria, ya que estas algas en general están adaptadas a diversos ambientes y a diversas condiciones ambientales, se las encuentra en casi todos los cuerpos de aguas continentales.

Figura 23. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - Julio 2019

División Bacillariophyta

La división incluye a las diatomeas, que son organismos unicelulares aislados en colonias, tienen una pared celular de sílice, producen su propio alimento gracias a la presencia de clofilas a, c y carotenoides o son heterotróficos por carecer de los pigmentos fotosintéticos (Lee 1999; Raven et al. 1999). Se calcula que existen aproximadamente 100 000 *spp.* (Raven et al. 1999). Las diatomeas son uno de los componentes del plancton y constituyen uno de los principales elementos de la flora marina de aguas abiertas y es un componente importante de la flora de ambiente de agua dulce (Lee 1999). Este grupo es el responsable del 25% de la producción primaria del mar y 75% de agua dulce. (Gallardo 1998).

Esta división para el presente monitoreo presentó **12 especies de diatomeas** (Bacillariophytas), siendo las más representativas *Cymbella* sp. con 374 cel/L y *Cymbella affinis* con 364 cel/L (Figura 24).

Figura 24. Cymbella affinis

División Chlorophytas

Esta división está constituida por algas verdes y es considerada como la más cercanamente relacionada con el reino Plantae. Las algas verdes son uni o pluricelulares, son autótrofas y sus pigmentos fotosintéticos son las clorofilasas a, b y los carotenoides. La pared celular está primordialmente constituida por celulosa (Lee 1999; Raven et al. 1999). El 90% de las especies son de agua dulce y el 10% restante consta de especies marinas (Smith 1955 en Lee 1999) y muchas de ellas forman simbiosis con hongos dando origen a los líquenes. Se calcula que existen aproximadamente 17 000 spp. (Raven et al. 1999).

En esta división se presentaron **08 especies**, siendo las más representativas y *Closterium leibleinii* con 119 cel/L y *Scenedesmus sp. (cenobio)* con 116 cel/L (Figura 25).

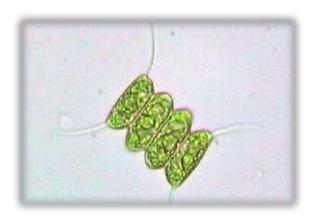


Figura 25. Scenedesmus sp. (cenobio)

División Cyanophytas

Las cianofíceas, también llamadas cianófitas o cianobacterias, son un filo de móneras microorganismos procarióticos, puesto que carecen de membrana nuclear. También se llaman cianofíceas o algas verde-azuladas, debido a que poseen sustancias fotosintéticas del tipo de la clorofila y ficocianina, un pigmento de color azulado. Como pueden realizar la fotosíntesis, desprenden oxígeno.

Son mayormente acuáticas con un amplio rango de salinidad y temperatura, pero mayormente en agua dulce. Algunas pueden formar, en épocas del año con temperatura favorable, una capa superficial de diversos colores conocida como flores de agua; como ejemplo está *Microcystis aeruginosa* que libera al medio sustancias tóxicas que pueden causar la muerte de los peces.

Algunas viven en aguas termales (hasta 80°C), en desiertos y lugares helados. Intervienen como formadoras del plancton. Contribuyen a la formación de arrecifes coralinos segregando carbonatos de Ca y Mg. Pueden ser utilizadas como indicadores biológicos de la contaminación porque muchas especies restringen su hábitat a aguas polucionadas.

La división presentó **04 especies**, la más predominante fue *Oscillatoria tenuis* (*filamento*) con 40 cel/L, *y Anabaena sp.* (*filamento*) con 35 cel/L (Figura 26).

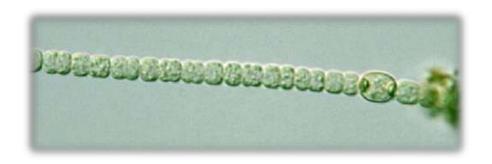


Figura 26. Anabaena sp.

8.2.2. Índices de Diversidad e Indicadores Biológicos

De la comunidad planctónica se analizaron exclusivamente los datos del fitoplancton por ser esta la comunidad mejor representada al presentar especies que se utilizan como indicadores biológicos.

Índice de Diversidad Específica Shannon - Wiener (H')

El presente índice Shannon – Wiener osciló de 1,903 a 2,595, encontrándose en el Rango de mediana diversidad (Figura 27). La más baja se presentó en la estación de Pacarán, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 1,272 a 2,618; encontrándose en el Rango de baja a mediana biodiversidad (Figura 27). Encontrándose con valores de baja biodiversidad en la estación de Pacarán, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

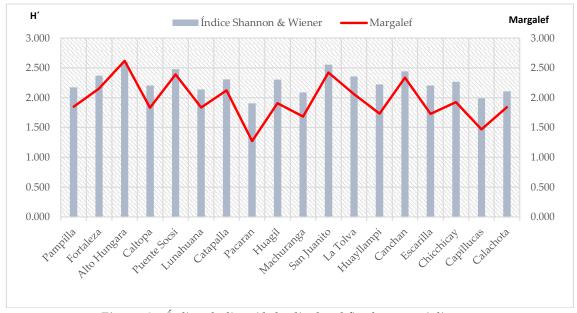


Figura 27. Índices de diversidad aplicados al fitoplancton – julio 2019

8.3. Zooplancton

Las especies predominantes de zooplancton en los puntos de muestreo pertenecen a la División Rotifera con 39 480 Org/m³ (68,4%), Arthropoda con 9 530 Org/m³ (16,5%) y Amoebozoa con 8 700 Org/m³ (15,1%) como se puede observar en la Figura 28.

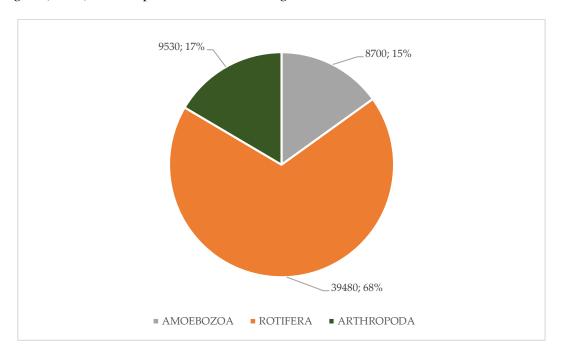
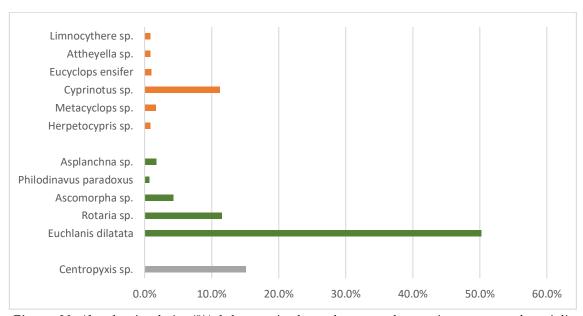



Figura 28. Porcentaje de divisiones de zooplancton identificado – julio 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 29), el phyllum con mayor presencia es Rotífera, siendo *Euchlanis dilatata* especie con mayor abundancia relativa registrada (50,3%).

Figura 29. Abundancia relativa (%) de las especies de zooplancton en las estaciones muestreadas - julio 2019.

8.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron **12 especies de organismos** pertenecientes a tres divisiones: **Amoebozoa, Rotífera y Arthropoda**. La abundancia total registrada en las 18 estaciones de muestreo fue de 57710 organismo/m³, teniendo mayor importancia en riqueza de especies los Rotíferos (Figura 30).

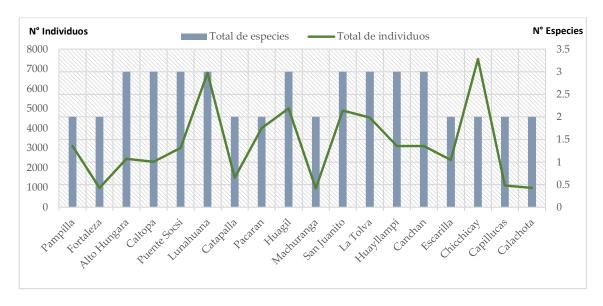


Figura 30. Abundancia y riqueza del zooplancton en las estaciones muestreadas - julio 2019

Phylum Amoebozoa

Amoebozoa es un grupo amplio y diverso, pero ciertos caracteres son comunes a todos sus miembros. La célula se divide típicamente en una masa central granular denominada endoplasma y una capa externa más clara llamada ectoplasma. Durante la locomoción se producen flujos de endoplasma primero hacia el exterior de la célula y después en sentido contrario hacia el interior.

Son uno de los grupos principales de protozoos ameboides, incluyendo a la mayoría de los que se mueven por medio del flujo interno de citoplasma. Sus seudópodos son de tipo romo y en forma de dedo y se denominan lobopodios. La mayoría son unicelulares y son comunes en el suelo y en los hábitats acuáticos, encontrándose algunos en simbiosis con otro organismo, mientras que otros son patógenos.

Se identificó 01 especie siendo Centropyxis sp. con 15,1% (Figura 31).

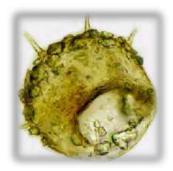


Figura 31. Centropyxis sp.

Phylum Arthropoda

Los artrópodos, phylum al que pertenecen los crustáceos, son animales esquizocelomados que poseen como característica común Ia presencia de un exoesqueleto quitinoso y apéndices articulados (de ahí el nombre del grupo: arthro=articulación, podos=patas). El exoesqueleto implica un problema para el crecimiento por lo que el animal para crecer debe reemplazarlo periódicamente, proceso denominado muda o ecdisis. El período entre dos mudas se denomina estadio. Los artrópodos constituyen el Phylum más abundante de todo el reino animal representando aproximadamente el 70% de las especies existentes sobre el planeta.

Se obtuvieron **06** especies del Phylum, siendo las más representativas las siguientes: *Cyprinotus sp.* con 6 500 Org/m³ y *Metacyclops sp.* con 950 Org/m³ (Figura 32).

Figura 32. Metacyclops sp.

Phylum Rotífera

Los rotíferos juegan un papel fundamental en las cadenas tróficas pelágicas. Son un eslabón entre el fitoplancton y los consumidores secundarios, pero su importancia se acrecienta porque pueden transferir materia y energía desde bacterias y partículas detríticas de pequeño tamaño, que son recursos no utilizables por otros organismos planctónicos. Unas pocas especies pueden ser depredadoras de otras especies de rotíferos.

Se identificaron **05** especies siendo *Euchlanis dilatata* (Figura 33) con 29 000 (50,3%) y *Rotaria sp.*, con 6 630 (11,5%).

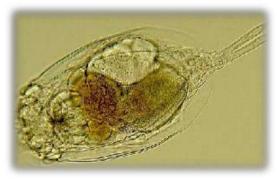


Figura 33. Euchlanis dilatata

8.3.2. Índices de Diversidad e Indicadores Biológicos

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Específica Shannon – Wiener osciló de 0,562 a 1,091; encontrándose en el rango de poca diversidad (Figura 34). La más baja se presentó en la estación de Pacarán, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,112 a 0,258; encontrándose en Baja biodiversidad (en general resultado de efectos antropogénicos) (Figura 34). Encontrándose con valores de baja biodiversidad en la estación de Chicchicay, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

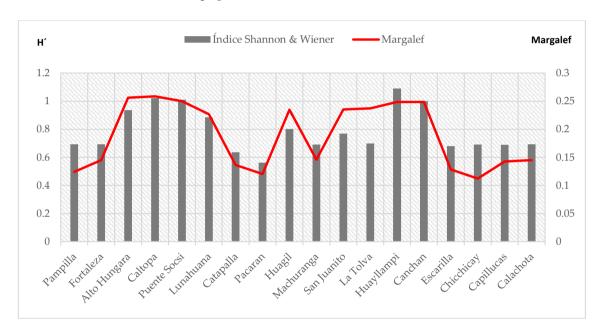


Figura 34. Índices de diversidad aplicados al zooplancton – julio 2019

IX. RESULTADOS DE LA EVALUACIÓN DEL BENTOS

Uno de los grandes grupos de comunidades del agua dulce y de mar es los bentos, constituido por los organismos tanto vegetales como animales que viven relacionados con el fondo, semienterrados, fijos o que pueden moverse sin alejarse demasiado de él.

Bajo la denominación de "bentos" se incluyen los seres que viven en estrecha relación con el fondo acuático, tanto vegetales (fitobentos) como animales (zoobentos). Los organismos bentónicos que habitan sobre la superficie del sustrato son llamados epibiontes (epiflora y epifauna) y pueden vivir fijos al sustrato, otros pueden caminar sobre él, arrastrarse, o nadar en sus inmediaciones (nectobentos); el término epibiosis, a pesar de su sentido general, se emplea casi exclusivamente para los sustratos duros.

9.1. Muestreo Biológico

Las muestras biológicas se obtuvieron empleando la red surber (500 micras) para macroinvertebrados y un cuter - cepillo para el fitoplancton bentónico.

9.2. Macroinvertebrados bentónicos

Para los macroinvertebrados bentónicos se identificaron 06 Phylum: Platyhelminthes, Annelida, Nematoda, Mollusca, Cnidaria y Arthropoda. La predominancia es del Phylum Arthropoda con 35 176 Org/m² (79,87%), Phylum Annelida con 8 055 Org/m² (18,29%), Phylum Mollusca con 420 Org/m² (0,95%), Phylum Cnidaria con 350 Org/m² (0,79%), Phylum Platyhelminthes con 20 Org/m² (0,05%) y Phylum Nematoda con 10 Org/m² (0,05%) (Figura 35).

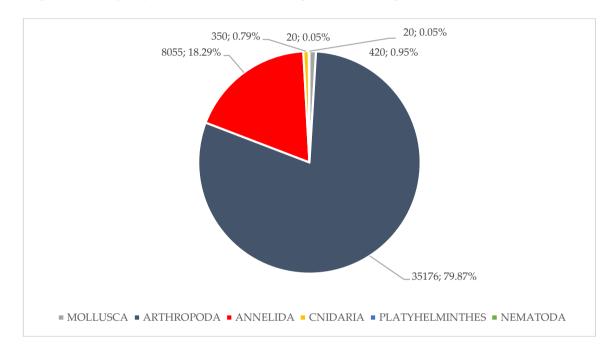
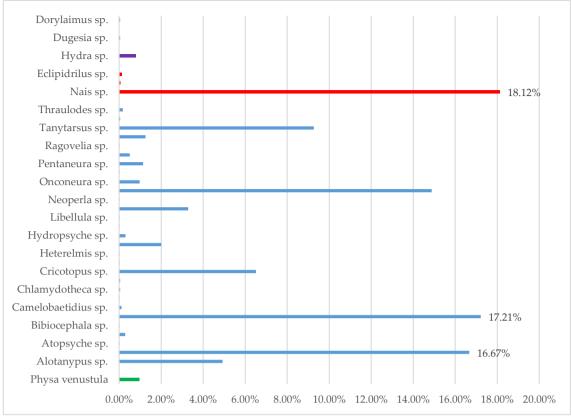



Figura 35. Macroinvertebrados bentónicos identificados en Julio 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 36), el phyllum dominante es Annelida, siendo Nais sp., la especie con mayor abundancia relativa registrada (18,12%).

Figura 36. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las estaciones muestreadas - julio 2019.

9.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 36 especies pertenecientes a cinco divisiones: Platyhelminthes, Annelida, Nematoda, Mollusca, Cnidaria y Arthropoda. La abundancia total registrada en las 18 estaciones de muestreo fue de 44 041organismos/m², teniendo mayor importancia en riqueza de especies los Arthropodos (Figura 37).

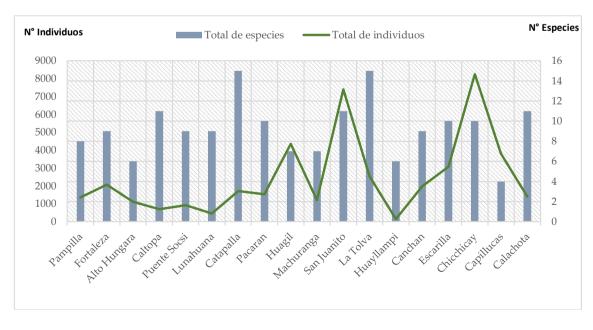


Figura 37. Riqueza y abundancia de las especies de bentos Julio 2019

Phylum Arthropoda

Se obtuvieron 29 especies del Phylum Arthropoda; encontrándose la más representativa la especie *Caenis sp.* con 7 580 Org/m² y *Andesiops sp.*, con 7 340 Org/m² (Figura 38 y 39).

Figura 38. Caenis sp.

Figura 39. Andesiops sp

Phylum Annelida

Se obtuvieron 03 especie del Phylum Annelida, encontrándose la especie más representativa Nais sp., con 7 980 Org/m² (Figura 40).

Figura 40. Nais sp.

Phylum Mollusca

Se obtuvo 01 especie del Phylum Mollusca, encontrándose para la clase Gastropoda la especie más representativa *Physa venustula* con 420 Org/m². (Figura 41).

Figura 41. Physa venustula

Phylum Nematoda

Se obtuvo 01 especie del Phylum Nematoda, encontrándose la especie más representativa *Dorylaimus sp.*, con 20 Org/m² (Figura 42).

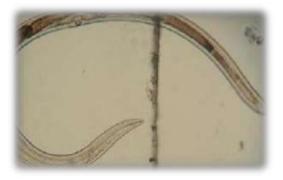


Figura 42. Dorylaimus sp

Phylum Platyhelminthes

Se obtuvo 01 especies del Phylum Platyhelminthes, encontrándose para la clase Turbellaria la especie *Dugesia sp.*, con 20 Org/m² (Figura 43).

Figura 43. Dugesia sp.

Phylum Cnidaria

Se obtuvo 01 especies del Phylum Cnidaria, encontrándose la especie *Hydra sp.*, con 350 Org/m² (Figura 44).

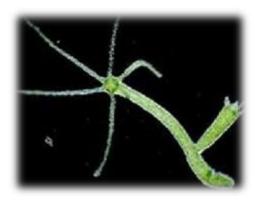
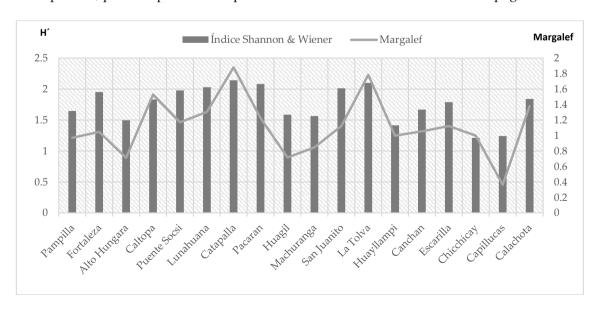


Figura 44. Hydra sp.

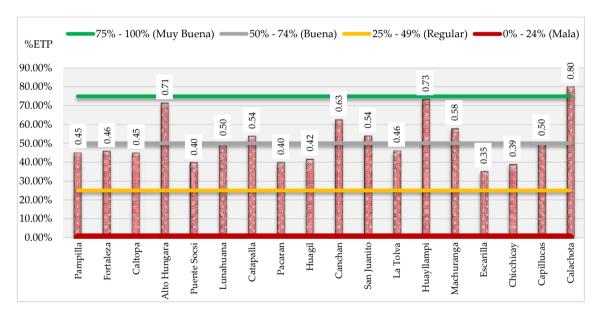

9.2.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 1,211 a 2,142; encontrándose de acuerdo a los rangos de poca a mediana diversidad (Figura 45). La más baja se presentó en la estación de Chicchicay, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,364 a 1,881; encontrándose en el rango de baja biodiversidad (Figura 45). Encontrándose con valores de baja biodiversidad en la estación de Capillucas, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.


Figura 45. Índices de diversidad biológica de macroinvertebrados bentónicos encontrado en el presente monitoreo – julio 2019

% EPT

Según el índice Biótico BMWP Biological Monitoring Working Party, es uno de los índices que aún no han sido estandarizados como una metodología para establecer las condiciones de calidad del agua en los ríos de la sierra y costa del Perú. Por lo que se decidió aplicar el índice % EPT que, si se encuentra estandarizado para los ríos de la costa, sierra y selva del Perú y de acuerdo a los resultados obtenidos sería un buen indicador de calidad de agua para los ríos de la zona evaluada, sin dejar de dar valor al primer índice.

Para el presente monitoreo (Julio 2019), se pudo observar cuatro zonas de calidad bien definidas, según la Figura 46:

- Regular: Pampilla, Fortaleza, Caltopa, Puente Socsi, Pacarán, Huagil, La Tolva, Escarilla, Chicchicay
- Buena: Alto Hungará, Lunahuana, Catapalla, Canchán, San Juanito, Huayllampi, Machuranga v Capillucas.
- Muy Buena: Calachota.

Figura 46. % EPT de macroinvertebrados bentónicos encontrados para el presente monitoreo – Julio 2019.

9.3. Fitoplancton bentónico

Para el Fitoplancton bentónicos se identificaron 3 Divisiones: Bacillariophyta, Chlorophyta y Cyanophyta. La división predominante ha sido Bacillariophyta con un 86,9% (716 cél/mm²), seguido de la división Chlorophyta con 8,4% (69 cél/mm²) y la división Cyanophyta en un 4,7% (39 cél/mm²). (Figura 47).

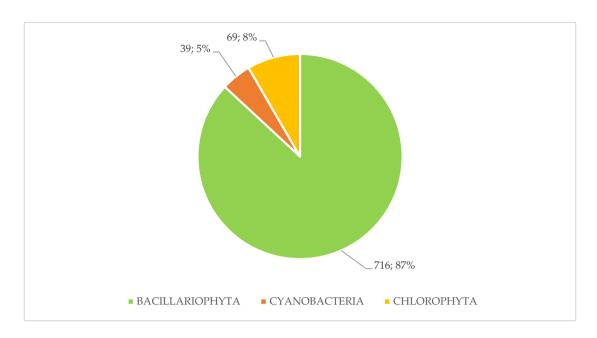
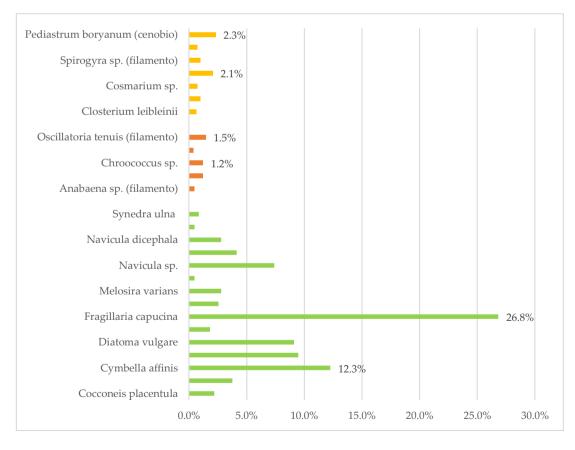



Figura 47. Porcentaje del fitoplancton bentónico obtenido en el presente monitoreo – julio 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 48), el phyllum dominante es Bacillariophyta, siendo *Fragillaria capucina*, la especie con mayor abundancia relativa registrada (26,8%). La especie siguiente con mayor abundancia relativa son también diatomeas; *Cymbella affinis* (12,3%).

Figura 48. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estaciones muestreadas – julio 2019

9.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 27 especies pertenecientes a tres divisiones: Bacillariophytas, Cyanophytas y Chlorophyta. La abundancia total registrada en las 18 estaciones de muestreo fue de 824 cél/mm², teniendo mayor importancia en riqueza de especies las Bacillariophytas (Figura 49).

Figura 49. Abundancia y riqueza del fitoplancton b entónico en las estaciones muestreadas – Julio 2017

División Bacillariophyta

En la División Bacillariophyta se observaron 15 especies donde las más representativas han sido *Fragillaria capucina* con **221 cél/mm²** y *Cymbella affinis* con **101cél/mm²** (Figura 50 y 51).

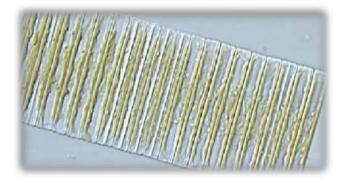


Figura 50. Fragillaria capucina

Figura 51. Cymbella affinis

División Chlorophyta

Se registraron 07 especies en la División Chlorophyta entre las más destacadas: *Pediastrum boryanum (cenobio)* con **19 cél/mm²** (Figura 52).

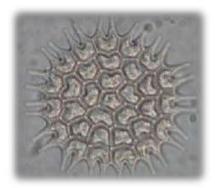


Figura 52. Pediastrum boryanum (cenobio).

División Cyanophytas

En la División Cyanophytas, registró 05 especies, siendo *Oscillatoria tenuis (filamento)* con **12** cél/mm² (Figura 53).

Figura 53. Oscillatoria tenuis (filamento)

9.3.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 1,948 a 2,560 encontrándose de acuerdo al rango de mediana diversidad (Figura 54). La más baja se presentó en la estación de **Chicchicay**, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.).

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 2,408 a 3,993 encontrándose en rango de baja a una mediana biodiversidad (Figura 54). Encontrándose con valores de baja biodiversidad en la estación de **Pacarán**, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

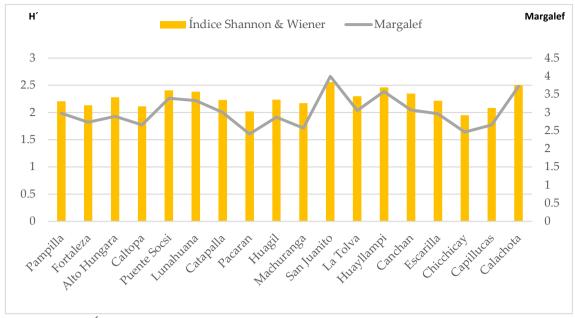
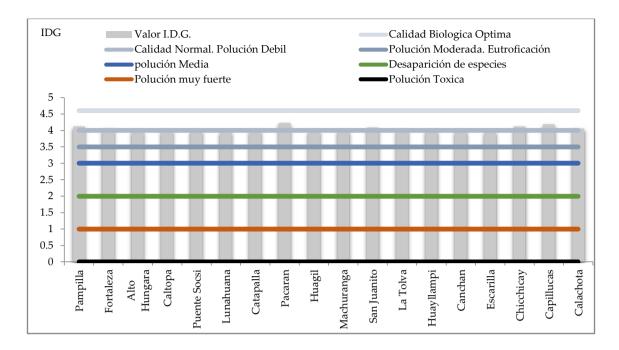


Figura 54. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – julio 2019


IDG

El índice biótico IDG utiliza a las diatomeas para hacer una valoración de la calidad del agua. Estas algas son conocidas como buenos indicadores y su uso se ha reportado e diversos países tanto sudamericanos como europeos. Los resultados por punto de muestreo siguen el mismo patrón de los índices de diversidad. (Tabla 44 y Figura 55)

Tabla 44. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – julio 2019

Estación	IDG	Significado		
Pampilla	4,12	Calidad Normal. Polución Débil		
Fortaleza	4,06	Calidad Normal. Polución Débil		
Alto Hungara	4,00	Calidad Normal. Polución Débil		
Caltopa	4,02	Calidad Normal. Polución Débil		
Puente Socsi	4,00	Calidad Normal. Polución Débil		
Lunahuana	3,98	Polución moderada. Eutrofización		
Catapalla	4,00	Calidad Normal. Polución Débil		
Pacaran	4,23	Calidad Normal. Polución Débil		
Huagil	4,00	Calidad Normal. Polución Débil		
Machuranga	4,00	Calidad Normal. Polución Débil		
San Juanito	4,09	Calidad Normal. Polución Débil		
La Tolva	4,04	Calidad Normal. Polución Débil		
Huayllampi	4,02	Calidad Normal. Polución Débil		
Canchan	4,00	Calidad Normal. Polución Débil		
Escarilla	3,97	Polución moderada. Eutrofización		
Chicchicay	4,12	Calidad Normal. Polución Débil		
Capillucas	4,19	Calidad Normal. Polución Débil		
Calachota	4,06	Calidad Normal. Polución Débil		

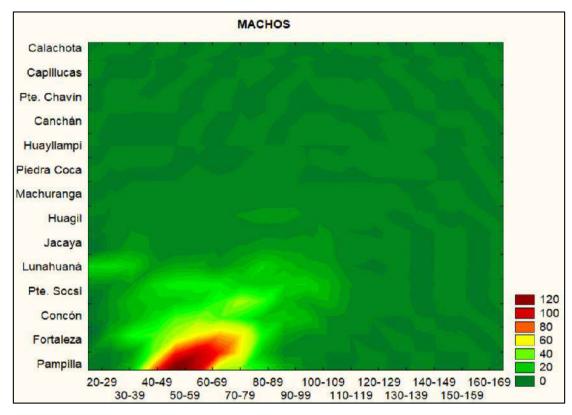
Elaborado: Celepsa - Julio 2019

Figura 55. IDG de fitoplancton bentónicos encontrados para el presente monitoreo julio 2019.

X. TECNICAS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTRE COMUNIDADES SOBRE LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGUA EN BASE A BIOINDICADORES.

10.1. Análisis de Frecuencias de Tamaños de Camarón a lo largo del río Cañete.

Distribución de Tamaños


El rango de tamaños del camarón estuvo entre los 20 y 139 mm de longitud. Los rangos de tamaños por sexo indican que la mayor frecuencia para machos se encontró entre los rangos de 60 - 69 y 70 - 79 y para las hembras se encontraron entre los rangos de 40 - 49 y 50 - 59 mm. Asimismo, los niveles de porcentaje de ejemplares > a 70 mm fueron más altos en la población de machos (92,06%) que en hembras (7,94%).

El Análisis log-linear demostró que la distribución espacial de los camarones a lo largo del río, tiene una relación con el sexo, los márgenes del rio, así como la altitud de las estaciones muestreadas.

Se pudo observar claramente que los ejemplares machos menores a 70 mm estuvieron distribuidos en las zonas bajas del área de estudio (Caltopa, Paullo, Catapalla, Pacarán, Huagil y Machuranga), encontrándose una mayor abundancia de camarones machos y hembras hacia las márgenes del rio. Ejemplares machos mayores a 70 mm fueron localizados principalmente en las estaciones: Pampilla, Lúcumo, Fortaleza, Alto Hungará, Concón, Pte Socsi, Lunahuana, Jacaya y Zuñiga, hacia ambas márgenes del rio Cañete. Por otro lado, ejemplares hembras mayores a 70 mm fueron localizadas en la estación: Pampilla. Además, se observó un ligero aumento de camarones hembras menores a 70mm en las estaciones de Canchán y Chavín.

Análisis del componente ambiental sobre la distribución por tamaños.

Las variables con mayor efecto de discriminación entre los grupos fueron temperatura del agua, temperatura ambiental, Oxigeno, dureza, pH, transparencia y caudal.

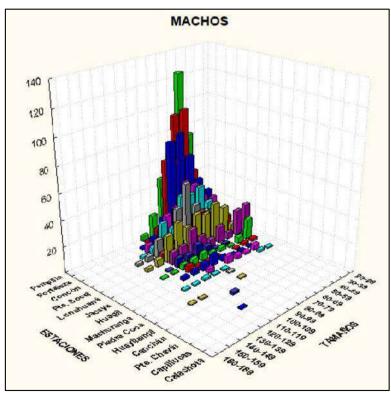
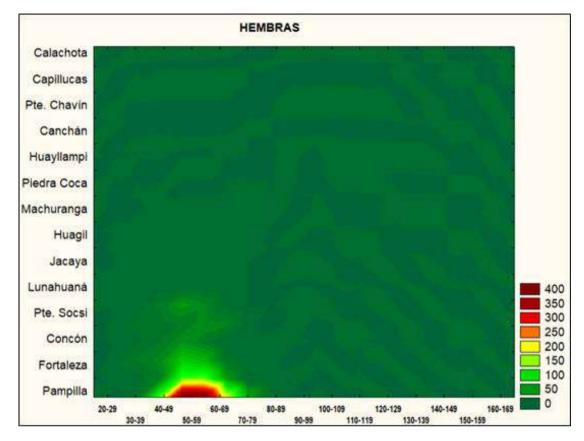



Figura 56. Frecuencia de tamaños por sexo (machos) y estación de muestreo

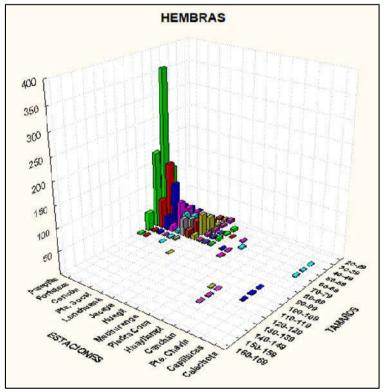
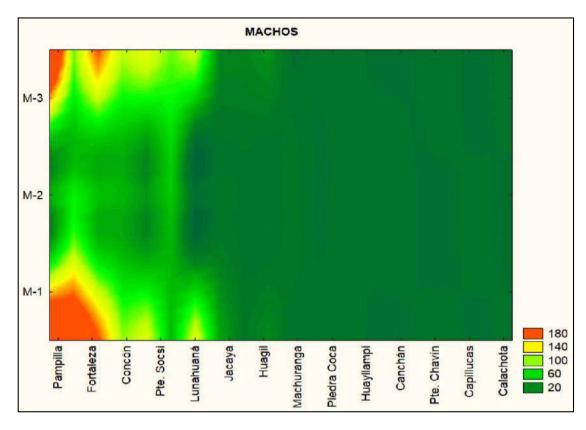



Figura 57. Frecuencia de tamaños por sexo (hembras) y estación de muestreo

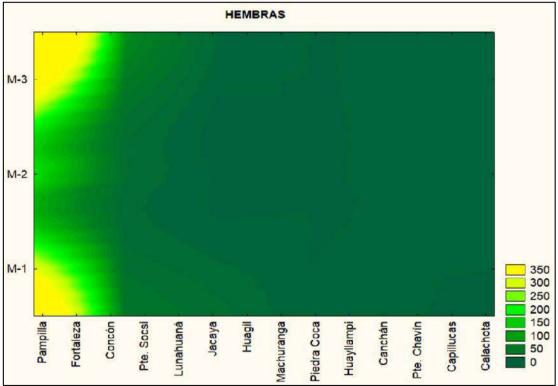


Figura 58. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo

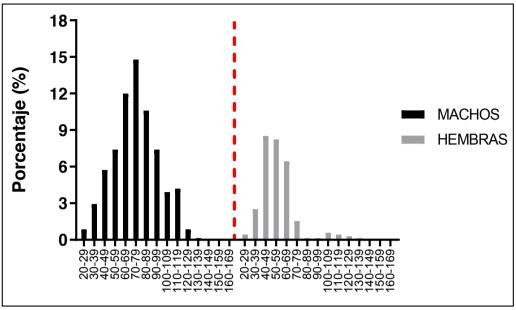


Figura 59. Distribución de la frecuencia de tamaños por sexo

10.2. Análisis del efecto ambiental sobre el camarón de rio

Los resultados indican una relación directa entre las mayores abundancias del camarón con el oxígeno disuelto y la temperatura del agua, medidas en las estaciones de muestreo: Alto Húngara, Fortaleza, Machuranga y Lunahuana zonas altas, zonas intermedias y bajas del área de estudio, así como, cierta asociación con el perifiton (Fragillaria rhomboides, Spirogyra sp., Pediastrum boryanum, Alotanypus sp.) y macroinvertebrados bentónicos (Caenis sp., y Cricotopus sp.)

De manera contraria existe una relación directa entre la menor abundancia del camarón de rio influenciadas por la temperatura de ambiente; además las estaciones: San Juanito, Chicchicay y Escarilla demostraron menor abundancia del camarón.

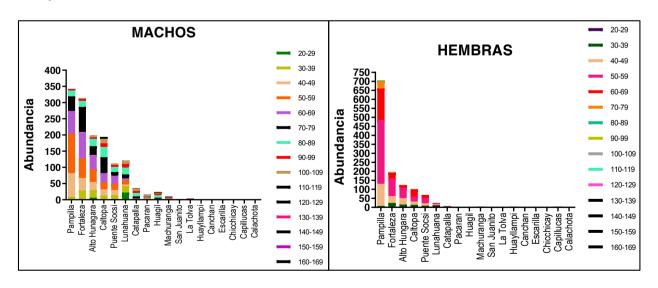
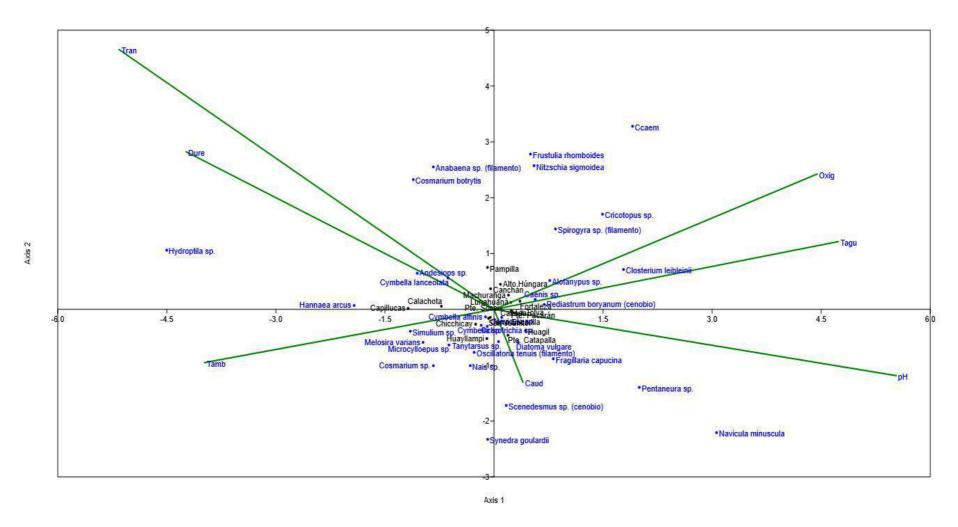
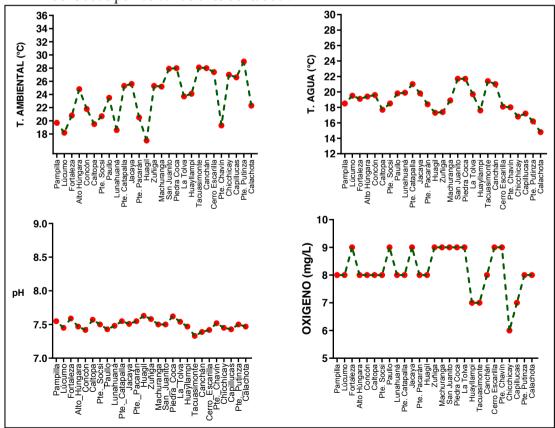


Figura 60. Abundancia de hembras y machos por estación de muestreo




Figura 61. Análisis de Correspondencia Canónica abundancia del camarón, variables ambientales e indicadores biológicos Monitoreo Julio 2019

10.3. Análisis de calidad de agua en base a indicadores biológicos

Análisis de parámetros fisicoquímicos.

Según las variables físico-químicas se pudo caracterizar las estaciones de la siguiente manera:

- La temperatura ambiental sufrió muchas variaciones en las diferentes estaciones de muestreo, teniendo a mínima (17,0°C) en Huagil y máxima en Putinza (29,0°C), esto dependiendo del horario del día en que se registró este parámetro, lo que influenció en la temperatura del agua.
- Los valores de la temperatura del agua en las estaciones: Calachota, Putinza, Capillucas, Chicchicay, Chavín y Escarilla (1300 1700 m.s.n.m.) se mantuvieron entre los 14,8 y 18,1°C, además, entre las estaciones Tacuasimonte y Chicchicay los valores del caudal fueron bajos, es decir, el agua del rio Cañete tuvo menor correntada, lo que indica que estas variables influyeron en el oxígeno disuelto, sin embargo, los valores de O2 siempre fueron mayores a 4 mg.L-1 valor establecido en el ECA agua.
- Los valores de turbidez siempre se mantuvieron bajos (0,68 1,87 NTU). Los valores de pH se mantuvieron entre los 7,33 y 7,63, lo que significa valores normales para este tipo de ambiente acuático, ya que los valores de ECA agua se encuentran entre (6,5 8,5).
- Según el Análisis de Componentes Principales (ACP) se concluye que la temperatura del agua, la temperatura del ambiente, la dureza y el pH, fueron los parámetros que influenciaron a las estaciones: Tacuasimonte, Chicchicay, Escarilla, Pampilla, Chavin, Con-Con, Lucumo, La Tolva, San Juanito, Huayllampi. Las estaciones restantes fueron influenciadas por las variaciones del caudal.

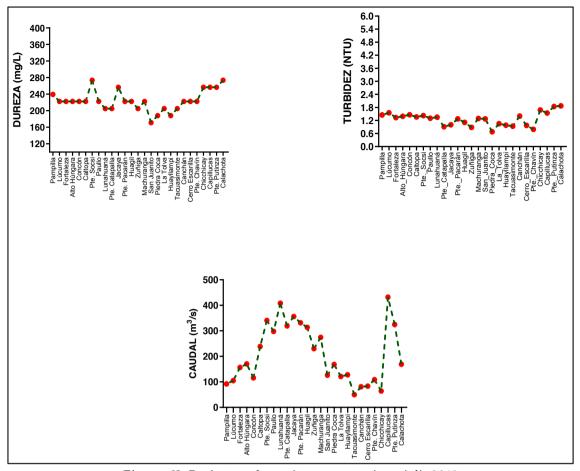


Figura 62. Parámetros de monitoreo por estaciones julio 2019

Composición de especies del perifiton

Se identificaron un total de 24 especies de las cuales 12 pertenecen a la división Bacillariophyta, 4 a la Cyanopyta, y 8 a la Chlorophyta. Las especies dominantes al interior de cada división fueron: Cymbella sp., Oscillatoria tenuis (filamento) y Closterium leibleinii.

Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de perifiton así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:

- Las estaciones Catapalla y Pacaran (500 700 m.s.n.m.), Huagil (700 900), Huayllampi (1100 -1300 m.s.n.m.) y Chicchicay (1300 1500 m.s.n.m.) estaciones que se encuentran en las zonas bajas, media y altas respectivamente estuvieron influenciadas por una mayor presencia de las microalgas: Navicula minúscula, Synedra goulardi, Scenedesmus sp., Fragillaria capucina, Diatomea vulgare, Cymbella sp y Pediastrum boryanum.
- Las estaciones Caltopa (100 300 m.s.n.m.), Lunahuaná (300 500 m.s.n.m.) y Socsi (300 500 m.s.n.m.) en la zona baja, las estaciones la San Juanito y La Tolva (900 1100 m.s.n.m.), presentes en la zona media y las estaciones Capillucas y Calachota (1500 1700 m.s.n.m.) ubicadas en la zona alta, fueron influenciadas por la presencia de las microalgas: *Cosmarium sp., Melosira varians, Hannaea arcus y Ocillatoria tenuis*.

- La estación Alto Hungara (100 300 m.s.n.m.) ubicadas en la zona baja y la estación Canchán (1100 1300 m.s.n.m.) ubicada en la zona alta fueron influenciadas por la presencia de las microalgas: *Nitzschia sigmoidea, Cosmarium botrytis y Spirogyra sp.*
- Las estaciones Fortaleza y Pampilla (0 100 m.s.n.m.) ubicada en la zona baja, la estación Machuranga (700 900 m.s.n.m.) ubicada en la zona media y la estación Escarilla (1300 1500 m.s.n.m.) ubicada en la zona alta, se vieron influenciadas por las microalgas: *Cymbella affinis, Navicula sp., Anabaena sp. y Frustulia romboides*.

Composición de especies del macroinvertebrados bentónicos

Se identificaron un total de 36 especies de las cuales 03 pertenecen al phyllum Annelida, 29 al Arthropoda 01 especie del phyllum Mollusca, 01 especie del phyllum Nemátoda, 01 especie del phyllum Cnidaria y 01 especie del phyllum Platyhelminthe. La especie dominante al interior de cada grupo taxonómico fueron: *Nais sp.* (phyllum annelida), *Caenis sp.* (phyllum arthropoda) respectivamente.

Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de macroinvertebrados bentónicos, así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:

- Las estaciones Chicchicay y Escarilla (1300 1500 m.s.n.m.), la estación Huayllampi (1100 1300 m.s.n.m.) ubicadas en la zona alta, las estaciones San Juanito (900 1100 m.s.n.m.) y Huagil (700 900 m.s.n.m.) ubicadas en la zona media y las estaciones Catapalla (500 700 m.s.n.m.) y Pte. Socsi (300 500 m.s.n.m.) ubicadas en la zona baja del área de estudio se caracterizaron por la presencia de las siguientes especies de macroinvertebrados bentónicos: Similium sp, Tanytarsus sp., Pentaneura sp. y Nais sp.
- Las estaciones Capillucas y Calachota (1500 1700 m.s.n.m.), ubicadas en la zona alta de estudio se caracterizaron por la presencia de los siguientes macroinvetebrados: *Hydroptila sp., Microcylloepus sp., Andesiops sp., y Ochrotrichia sp.*
- La estación Canchán (1100 1300 m.s.n.m.), ubicada en la zona alta, la estación La Tolva (900 1100 m.s.n.m.), la estación Pacarán (500 700 m.s.n.m.), ubicadas en la zona media y las estaciones Caltopa y Alto Huangara (100 300 m.s.n.m.) pertenecientes a la zona baja, estuvieron influenciadas por los siguientes macroinvertebrados bentónicos: Caenis sp., Alotanypus sp. y Cricotopus sp.

Distribución de especies del macroinvertebrados bentónicos, perifiton y su relación con las variables hídricas.

Los resultados del ACC indicaron lo siguiente:

- El oxígeno disuelto y la temperatura del agua estuvieron relacionados con la presencia de los macroinvertebrados: Caenis sp., Alotanypus sp., y Cricotopus sp. además de la presencia de las microalgas: Frustulia romboides, Nitzschia sigmoidea, Spirogyra sp., Pediastrum boryanum.
- La presencia de las especies de macroinvertebrados: *Hydroptila sp. y Andesiops sp.*, y así como las microalgas: *Cosmarium botrytis, Anabaena sp., y Cymbella lanceolata* estuvieron influenciadas por la dureza y la transparencia del agua.
- La presencia de las especies de macroinvertebrados: Simulium sp., Nais sp., Microcylloepus sp., Cymbella affinis, Cymbella sp., y Ochrotrichia sp., asi como las microalgas: Melosira varians, Cosmarium sp. y Oscillatoria tenuis estuvieron influenciadas por la temperatura del ambiente.

• La presencia de las especies de macroinvertebrados bentónicos: *Navicula sp., Tanytarsus sp., y Navicula minuscula y Pentaneura sp.,* así como de las microalgas: *Diatoma vulgare, Fragillaria capucina, Scenedesmus sp., Synedra goulardii y Navicula minuscula* se vieron influenciadas por el caudal y el pH del agua.

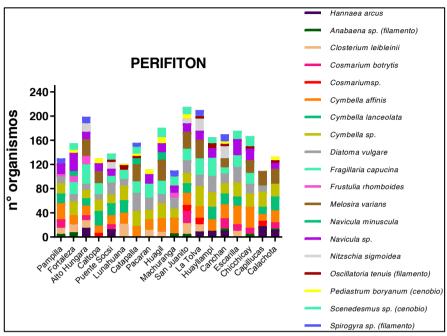


Figura 63. Abundancia de la comunidad del perifiton por estaciones de muestreo

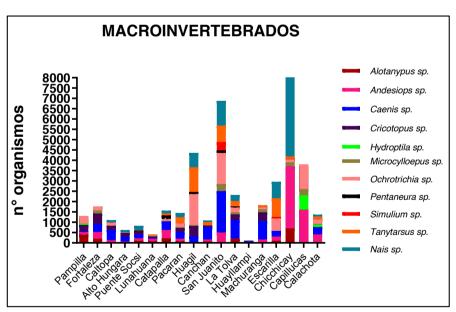


Figura 64. Abundancia de la comunidad del bentos por estaciones de muestreo

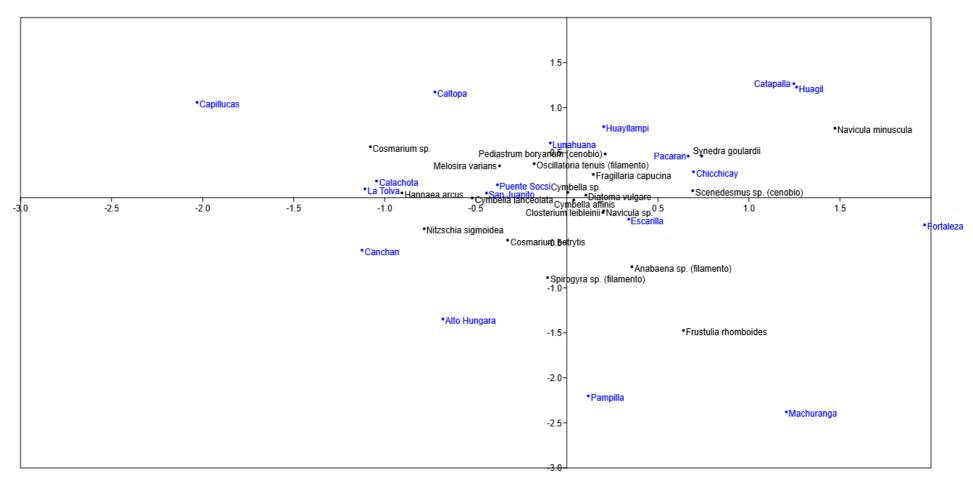


Figura 65. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton

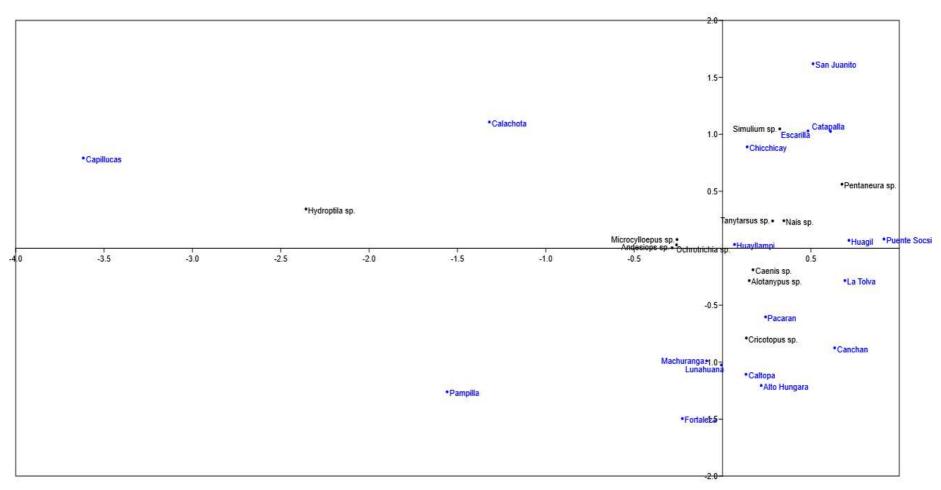


Figura 66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos

XI. CONCLUSIONES

- Las muestras evaluadas fueron realizadas aún 95% de significancia en cada estación de muestreo.
- De acuerdo a la proporción de sexos la población de hembras se acerca a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico, debido a que dicho sector ha mejorado su habitabilidad para el crecimiento de las hembras, razón por la que ellas son las que sobreviven y se desarrollan óptimamente en dichos sectores.
- En base a la madurez gonadal, los machos, presentan el mayor porcentaje de la población en estadio Inactivo o de Reposo y para las hembras, el mayor porcentaje de la población se encuentra en estadio Inmaduro. Por lo tanto, para esta etapa de evaluación los machos representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan.
- Comparándolo con los resultados obtenidos con julio 2018, hay una disminución en la biomasa de 84 kg. y una disminución en la abundancia de 29 365 individuos.
- Los impactos naturales del 2017 sumado a los impactos antrópicos del 2018 sin medidas adecuadas de intervención, originaron un descenso poblacional importante en el recurso camarón aun con la intervención responsable de los extractores de camarón para salvaguardar el recurso con el Programa de Control y Vigilancia.
- En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo se encuentra dentro de los rangos para el desarrollo del camarón.
- De las estaciones en el presente monitoreo, el pH se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6,5 a 8,5).
- Los valores de oxígeno del presente monitoreo son normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥ 5).
- De acuerdo a la dureza los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio obteniéndose valores óptimos para su desarrollo en el presente monitoreo.
- Los valores de CO₂, se encuentran dentro del rango sugerido donde se indica que valores < 7 mg/L permiten el desarrollo de la acuicultura.
- La erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas. Por lo tanto, la turbidez evaluada es óptima para el desarrollo de los camarones.

- Para el fitoplancton la distribución con mayor presencia de abundancia relativa en todas las estaciones, fue el phyllum Bacillariophytas, con la especie Cymbella affinis. De acuerdo a los índices evaluados la más baja se presentó en la estación de Pacarán, por lo se puede decir que están sometidas a efectos antropogénicos.
- De acuerdo al zooplancton la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Rotífera, con la especie *Euchlanis dilatata*. De acuerdo a los índices evaluados la más baja se presentó en las estaciones de Pacarán y Chicchicay, por lo se puede decir que están sometidas a efectos antropogénicos.
- De acuerdo al macroinvertebrados bentónicos la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Annelida, con la especie *Nais sp.*, De acuerdo a los índices evaluados la más baja se presentó en las estaciones de Chicchicay y Capillucas, por lo se puede decir que están sometidas a efectos antropogénicos. Además, el %EPT oscilo de regular a muy buena.
- De acuerdo al zooplancton la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phylum Bacillariophyta, con la especie *Fragillaria capucina*. De acuerdo a los índices evaluados la más baja se presentó en las estaciones de Pacarán y Chicchicay, por lo se puede decir que están sometidas a efectos antropogénicos. Además, el IDG oscilo de calidad normal o moderada.
- Se sugiere la existencia de una distribución espacial relacionada con el tamaño de los camarones debido a la diferencia en la ubicación de los individuos mayores y menores de 70 mm a lo largo del rio y en cada uno de sus márgenes, posiblemente a factores como el sexo de los organismos y parámetros físicos-químicos como la temperatura del agua, oxigeno, caudal, etc.
- Durante el monitoreo correspondiente al mes de Julio-2019, las zonas de mayor abundancia de camarón se distribuyeron en las partes bajas del río Cañete (Pampilla, Fortaleza, Alto Húngara, Caltopa, Pte. Socsi y Lunahuana).
- Se puede observar una presencia mínima de organismos machos y hembras de camarón en los sectores de Catapalla, Huagil y Machuranga, probablemente por la influencia de los parámetros fisicoquímicos y las actividades antropogénicas.
- Las zonas bajas del Río Cañete (0 500 m.s.n.m.) presentaron algunas especies indicadores de buena calidad de agua, por lo que sugerimos una relación directa con la mayor abundancia de los camarones.
- Según los resultados del Monitoreo del mes de Julio-2019 y en base a la zonificación del área de estudio (estratos), la relación con los indicadores biológicos (perifiton y macroinvetebrados bentónicos) y las variables hídricas ambientales es posible sugerir que:
 - En el estrato que abarca desde los 1100 a 1700 m.s.n.m. (zonas altas), las estaciones presentan una mayor abundancia de especies indicadoras de buena calidad de agua, tanto macrobentos (*Andesiops sp., Microcylloepus sp y Ochrotrichia sp.*), como fitoplancton (*Navícula minúscula, Caenis sp. y Nais sp.*) sugiriendo una mínima contaminación.

En el estrato que abarca desde los 0 a 1100 m.s.n.m. (zonas bajas-intermedias), las estaciones presentan una disminución en la abundancia de especies indicadoras de buena calidad de agua, es decir, se tendría una contaminación moderada, pero que aún no llegaría a alterar de manera significativa las comunidades biológicas.

XII. RECOMENDACIONES

- Se recomienda seguir con las estimaciones de bio-indicadores de calidad de agua mediante el IDG y ACP.
- Se recomienda continuar con el repoblamiento introcuenca de juveniles en el Caudal Ecológico y aguas arriba de la presa Capillucas, que permita mantener la distribución y población adecuada en dicho tramo, involucrando a las autoridades locales, para que entiendan la necesidad de lograr un desarrollo económico con responsabilidad ambiental y aprovechamiento racional sobre sus recursos económicos potenciales como el camarón de rio.
- Se recomienda seguir con el Programa de Control y Vigilancia del camarón de río para ayudar a una recuperación rápida del recurso minimizando los impactos de una pesca irresponsable y ampliarlo hacia los sectores del caudal ecológico por encontrarse la especie muy vulnerable debido al bajo caudal y muy expuesta a ser modificada de manera negativa por intervenciones antrópicas en las zonas bajas.

XIII. BIBLIOGRAFÍA

APHA-AWWA-WEF. 1999. Standard Methods for the Examination of Water and Wastewater. 20th Edition. Part 10200, PlanKton. Washington.

Espino, M. Y C. Wosnitza- Mendo. 1984. Manuales de Evaluación de peces N°1 área barrida. Int. Mar Perú N° 86. 31 pp.

Ministerio de Pesquería, Industria Pesquera de Consumo Humano Directo. 2001. Protocolo para el monitoreo de efluentes y cuerpo marino receptor. Diario Oficial "El Peruano", Normas Legales, Separata Especial, pp 215564-215582 - Lima.

Viacava M., Aitken R y Llanos J. 1978. Estudio del camarón en el Perú 1975 - 1976. Boletín del Instituto del Mar del Perú. Vol. 3 No 5.

Walsh Perú S.A. 1998. Volumen II: Diagnóstico Ambiental para el EIA del Proyecto Hidroeléctrico El Platanal. Cuenca Media y Alta del Río Cañete. Lima - Perú.

Walsh Perú S.A. julio 2001. Primer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. 2001. Evaluación Poblacional y Ambiental del Camarón de Río Cryphiops caementerius en el Río Cañete. Lima - Perú.

Walsh Perú S.A. octubre 2001. Segundo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal-Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2002. Tercer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2002. Cuarto Monitoreo de Camarón de Río Cryphiops caementaríus en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. mayo 2003. Quinto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2003. Sexto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2004. Séptimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2004. Octavo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2005. Noveno Monitoreo de Camarón de Río Cryphíops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2005. Décimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2006. Undécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2006. Duodécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

CELEPSA. julio 2007. Décimo Tercer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2007. Décimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2008. Décimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2008. Décimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2009. Décimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2009. Décimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2010. Décimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2010. Vigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2011. Vigésimo Primer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2011. Vigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2012. Vigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2012. Vigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2013. Vigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2013. Vigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2014. Vigésimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2014. Vigésimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2015. Vigésimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2015. Trigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2016. Trigésimo Primero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2017. Trigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2018. Trigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2018. Trigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

XIV. ANEXOS

ANEXO 1 MARCO TEÓRICO PARA EL PROGRAMA DE MONITOREO

El Programa de Monitoreo de Camarones permitirá hacer un seguimiento de las variables determinantes de la población y detectar - con validez estadística - en qué momento se superan los Límites Aceptables de Cambio (LACs), estableciendo las medidas a considerar como complemento al Plan de Manejo.

Para detectar los cambios inducidos en la población por los efectos del proyecto, la serie de datos a registrarse se organizará considerando un diseño "antes del proyecto" y "durante el proyecto"; así como, "área no perturbada" y "área impactada". Este diseño (ACDI) se puede expresar de modo gráfico como sigue:

Figura 67. Programa de Monitoreo

Un diseño ADCI¹tiene como objetivo la recopilación de información tanto en la zona en que se registrarán efectos ambientales como en una zona de control que esté libre de toda influencia de impacto. Para ambas zonas se requerirán registros antes y después de los efectos ocurridos.

La comparación del modo en que evolucionan las "zonas de control" e "impactadas" luego de la ocurrencia del impacto, es la forma más eficiente de demostrar la existencia de unas comparaciones estadísticas entre "zonas" y entre los registros "antes" y "después" de los impactos se harán según un diseño muestra (el diseño experimental no resulta adecuado para este tipo de evaluaciones). Cada una de las estimaciones de cualquiera de las variables en análisis estará acompañada de su correspondiente Intervalo de Confianza (IC). Al comparar una variable en dos momentos o en dos zonas, se tomará como evidencia de "diferencias estadísticamente significativas", entre ambas, si sus correspondientes IC no se sobreponen.

La selección de las áreas no perturbadas (zonas de control) y de las áreas no impactadas (zonas impactadas) tomará en cuenta los sectores del río Cañete evaluados. A continuación, se describen las características de estos sectores en función del marco teórico del monitoreo y los resultados obtenidos.

¹Sánchez, E. 2000 Determinación de los patrones espacio-temporales de uso recreativo de la Reserva Nacional de Paracas y estimación del Impacto Ambiental de esta actividad. Estudio. Instituto Nacional de Recursos Naturales - INRENA. Lima.

 $_{
m igina}104$

ANEXO 2

Tabla 45. Datos Características de las Estacione de muestreo

ESTACION	FECHA	HORA	COORDEN ADA ESTE	COORDEN ADA SUR	T.AMB. ºC	T.AGUA ºC	Velocidad (m/s)	Ancho del río (m)	Profundida des del río (m)		рН	OXIGENO (mg/L)	CO2 (mg/L)	DUREZA (mg/L)	Turbidez (NTU)	Caudal (m3/s)
PAMPILLA	12/07/2019	10:43	351201	8548915	19.7	18.5	0.82	13.3	8.50	0.00	7.55	8	10	239.4	1.45	91.94
LUCUMO	12/07/2019	13:29	351517	8549007	18.2	19.5	0.72	17.3	8.42	0.00	7.45	8	10	222.3	1.55	104.68
FORTALEZA	13/07/2019	10:20	358583	8550103	20.8	19.1	1.03	18.0	8.47	0.00	7.59	9	5	222.3	1.33	156.37
ALTO HUNGARA	13/07/2019	12:42	362675	8551281	24.8	19.4	0.65	31.0	8.51	0.00	7.47	8	5	222.3	1.39	170.20
CONCON	13/07/2019	15:40	364522	8552531	21.8	19.6	0.74	18.5	8.43	0.00	7.42	8	5	222.3	1.46	115.52
CALTOPA	14/07/2019	09:29	366664	8552746	19.5	17.7	1.19	23.5	8.50	0.00	7.57	8	10	222.3	1.36	238.51
SOCSI	14/07/2015	11:33	369513	8558710	20.7	18.5	1.63	24.5	8.52	0.00	7.50	8	5	273.6	1.42	340.80
PAULLO	14/07/2019	14:14	373007	8560900	23.5	19.8	0.95	36.5	8.57	0.00	7.43	9	10	222.3	1.30	297.91
LUNAHUANA	14/07/2019	16:41	374785	8566039	18.6	19.9	1.45	33.0	8.50	0.00	7.48	8	5	205.2	1.35	408.00
CATAPALLA	15/07/2019	15:09	380869	8572148	25.3	21.0	1.07	35.0	8.56	0.00	7.55	8	10	205.2	0.91	319.57
JACAYITA	15/07/2019	12:35	382818	8574887	25.6	19.8	1.45	29.0	8.44	0.00	7.51	9	10	256.5	1.00	356.01
PACARAN	15/07/2019	10:42	385511	8577880	20.5	18.4	0.99	39.0	8.60	0.00	7.55	8	10	222.3	1.27	331.26
HUAGIL	15/07/2019	08:43	387378	8578135	17.0	17.3	1.25	29.5	8.50	0.00	7.63	8	10	222.3	1.11	313.44
ZUÑIGA	18/07/2019	09:08	389449	8577610	25.3	17.4	0.70	40.0	8.27	0.00	7.58	9	10	205.2	0.88	230.12
MACHURANGA	18/07/2019	11:19	391505	8580328	25.2	18.9	1.31	25.0	8.37	0.00	7.50	9	15	222.3	1.29	274.43
SAN JUANITO	17/07/2019	15:45	394410	8580325	27.9	21.7	0.52	27.0	9.05	0.00	7.50	9	5	171.0	1.27	126.12
PIEDRA COCA	17/07/2019	13:55	397490	8580163	28.0	21.7	0.91	21.0	8.80	0.00	7.62	9	10	188.1	0.68	168.00
LA TOLVA	17/07/2019	11:03	400752	8582704	23.7	19.7	0.77	18.5	8.51	0.00	7.54	9	10	205.2	1.05	121.10
HUALLAMPI	17/07/2019	09:34	401842	8583245	24.1	17.6	0.85	18.5	8.12	0.00	7.47	7	10	188.1	0.98	127.85
TACUASIMONTE	16/07/2015	15:54	402931	8585765	28.1	21.4	0.52	11.5	8.42	0.00	7.33	7	10	205.2	0.94	49.98
CANCHAN	16/07/2019	14:05	400847	8586172	28.0	21.0	0.60	16.0	8.38	0.00	7.39	8	15	222.3	1.40	80.65
ESCARILLA	16/07/2019	11:44	399442	8587471	27.4	18.1	0.73	13.5	8.48	0.00	7.42	9	15	222.3	0.97	83.26
PUENTE CHAVIN	16/07/2019	09:46	397493	8591146	19.3	18.0	0.94	14.0	8.23	0.00	7.52	9	15	222.3	0.79	108.44
CHICHICAY	11/07/2019	15:40	396781	8592869	27.0	16.8	0.52	14.5	8.45	0.00	7.45	6	10	256.5	1.68	64.07
CAPILLUCAS	11/07/2019	14:22	395311	8597223	26.6	17.2	1.67	31.5	8.23	0.00	7.43	7	10	256.5	1.54	432.08
PUENTE PUTINZA	11/07/2019	12:56	396028	8599580	29.0	16.2	1.78	22.0	8.30	0.00	7.50	8	10	256.5	1.84	324.62
CALACHOTA	11/07/2019	11:46	393842	8602429	22.3	14.8	1.23	16.5	8.31	0.00	7.47	8	5	273.6	1.87	168.76

Tabla 46. Resultados de los Muestreos Biométricos

NIRONALO NIRON NIRON NIRONALO NIRO	AMERICA SE	LONG. TOTAL	LONG. CEFALOTORAX	PESO TOTAL	PESO ABDOMEN	OF. C	ESTADO DE MADUREZ	s	EXO	rom · cré
2529	NTERVALOS -	mm.			gr.	SEXO	o o	масно	HEMBRA	ESTACIÓN
29	20-24	22	7	0.4	0.2	M	1	1		LUNAHUAN.
28	25-29	28	10	0.6	0.3	M	1	1		PAMPILLA
28		29	10	0.5	0.3	Н	1		1	PAMPILLA
28		28	7	0.5	0.2	M	1	1		CALTOPA
28		28	8	0.3	0.2	Н	1		1	CALTOPA
28										
28		28	8	0.5	0.3	M	1	1		LUNAHUAN
30-34		28	8	0.5	0.3	M	1	1		LUNAHUAN
30-34 34 12 0.6 0.2 H 1 1 PORTALE 32 10 0.7 0.4 M 1 1 1 CALTOP 32 10 0.5 0.3 M 1 1 1 CALTOP 32 10 0.5 0.4 M 1 1 1 CALTOP 33 10 0.6 0.3 M 1 1 1 SOCSI 33 12 0.7 0.4 M 1 1 1 SOCSI 34 12 0.9 0.5 M 1 1 1 SOCSI 35 10 0.6 0.3 M 1 1 1 SOCSI 36 11 0.5 0.3 M 1 1 1 SOCSI 37 10 0.6 0.3 M 1 1 1 SOCSI 38 12 0.7 0.4 M 1 1 1 SOCSI 39 10 0.7 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.4 H 1 1 1 PAULL 30 10 0.6 0.3 H 1 1 1 PAULL 30 10 0.6 0.3 H 1 1 1 PAULL 30 10 0.6 0.3 H 1 1 1 PAULL 30 10 0.7 0.4 M 1 1 1 PAULL 31 10 0.7 0.4 M 1 1 1 PAULL 32 10 0.6 0.3 H 1 1 T PAULL 33 10 0.7 0.4 M 1 1 1 PAULL 33 10 0.7 0.4 M 1 1 1 PAULL 34 10 0.8 0.4 H 1 1 T PAULL 35 10 0.8 0.4 H 1 1 T PAULL 36 10 0.8 0.4 H 1 1 T PAULL 37 12 0.6 0.3 M 1 1 T CATAPAL 38 12 1.3 0.8 H 1 1 T CATAPAL 39 38 13 1.5 0.7 M 1 1 T FORTALE 39 11 1.2 0.5 H 1 T FORTALE 39 12 1.0 0.4 M 1 1 T FORTALE 30 11 1 CATAPAL 31 10 0.7 0.3 M 1 1 T CATAPAL 32 10 0.8 0.4 H 1 1 T FORTALE 33 10 0.7 0.3 M 1 1 T CATAPAL 35 12 0.6 0.3 M 1 1 T FORTALE 36 12 0.9 0.5 H 1 T T FORTALE 37 15 0.8 0.4 H 1 T T FORTALE 38 12 1.0 0.6 M 1 T T FORTALE 39 12 1.0 0.6 M 1 T T FORTALE 30 12 1.0 0.6 M 1 T T FORTALE 31 11 1.2 0.7 H 1 T FORTALE 32 10 0.8 0.4 H 1 T T FORTALE 33 10 0.8 0.4 H 1 T T FORTALE 34 12 1.0 0.6 M 1 T T FORTALE 35 12 0.9 0.5 M 1 T T FORTALE 36 12 0.9 0.5 M 1 T T FORTALE 36 12 0.9 0.5 M 1 T T FORTALE 37 11 1.0 0.6 M 1 T T FORTALE 38 12 1.0 0.6 H 1 T T FORTALE 39 11 1.0 0.6 H 1 T T FORTALE 30 11 1.0 0.6 H 1 T T FORTALE 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		28	7	0.3	0.2	M	1	1		LUNAHUAN
32								6	3]
32	30-34	34	12	0.6	0.2	Н	1		1	FORTALEZ/
32								1		A.HUNGAR
32								•	1	
32								1	-	CALTOPA
30										CALTOPA
33										
32 11 0.5 0.3 M 1 1 1 PAULLO 34 12 0.9 0.5 M 1 1 1 PAULLO 32 10 0.6 0.4 H 1 1 1 PAULLO 32 10 0.6 0.4 H 1 1 1 PAULLO 33 10 0.4 0.2 M 1 1 1 PAULLO 32 10 0.6 0.3 H 1 1 1 JACAY 32 10 0.6 0.3 H 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 32 10 0.7 0.4 H 1 1 1 JACAY 32 10 0.7 0.4 H 1 1 1 JACAY 32 10 0.8 0.4 H 1 1 1 PAULLO 32 10 0.8 0.4 H 1 1 1 PAULLO 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 FORTALE 35 38 13 1.5 0.7 M 1 1 1 FORTALE 37 12 0.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 1 JACAY 36 12 0.9 0.5 M 1 1 1 JACAY 37 11 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA										
34 12 0.9 0.5 M 1 1 1 PAULLO 32 10 0.7 0.4 H 1 1 1 PAULLO 32 10 0.6 0.4 H 1 1 1 PAULLO 32 10 0.6 0.3 H 1 1 1 PAULLO 32 10 0.6 0.3 H 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 32 10 0.7 0.4 H 1 1 1 JACAY 32 10 0.8 0.4 H 1 1 1 TACATA 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 12 0.6 0.3 M 1 1 1 FORTALE 34 13 1.5 0.7 M 1 1 1 FORTALE 35 38 13 1.2 0.5 H 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 CALTOP 38 12 0.0 0.6 M 1 1 1 LUNAHUA 35 12 0.9 0.4 H 1 1 1 CALTOP 36 12 0.9 0.5 H 1 1 1 LUNAHUA 37 12 1.0 0.6 H 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 39 15 10 0.8 0.5 H 1 1 JACAY 30 11 1.0 0.5 M 1 1 1 PACARA 31 11 1.0 0.5 M 1 1 1 PACARA 32 11 1 1.0 0.5 M 1 1 1 PACARA 33 11 1 1.0 0.5 M 1 1 1 PACARA 35 11 1 1.0 0.5 M 1 1 1 PACARA 37 11 1 1.0 0.5 M 1 1 1 PACARA 37 11 1 1.0 0.5 M 1 1 1 PACARA 37 11 1 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 1.0 5 M 1 1 1 PACARA 37 11 1 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 1.0 5 M 1 1 1 PACARA 39 12 1.1 1.0 5 M 1 1 1 PACARA										
32 10 0.7 0.4 H 1 1 1 PAULLO 32 10 0.6 0.4 H 1 1 1 PAULLO 33 10 0.4 0.2 M 1 1 1 PAULLO 33 10 0.6 0.3 H 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 32 10 0.8 0.4 H 1 1 1 1 JACAY 32 10 0.8 0.4 H 1 1 1 1 PAULLO 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 FORTALE 33 112 0.6 0.3 M 1 1 1 FORTALE 34 13 1.5 0.7 M 1 1 1 FORTALE 37 12 1.0 0.4 M 1 1 1 FORTALE 37 11 1.2 0.5 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAWPLL 37 20 2.8 1.6 H 1 1 1 PAWPLL 37 20 2.8 1.6 H 1 1 1 PAWPLL 37 37 13 1.2 0.7 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 LUNAHUA 39 12 1.0 0.6 H 1 1 1 LUNAHUA 30 12 0.9 0.4 H 1 1 1 LUNAHUA 31 10 0.8 0.5 H 1 1 1 LUNAHUA 32 10 0.8 0.5 H 1 1 1 LUNAHUA 33 10 0.8 0.5 H 1 1 1 JACAY 36 12 0.9 0.5 H 1 1 1 JACAY 37 11 1.0 0.6 M 1 1 1 JACAY 38 12 1.1 0.0 0.6 H 1 1 1 JACAY 39 11 1.0 0.8 0.5 H 1 1 1 JACAY 30 12 0.9 0.5 M 1 1 1 JACAY 31 11 1.0 0.5 M 1 1 1 JACAY 32 12 1.1 0.5 M 1 1 1 PACARA 33 12 1.1 0.5 M 1 1 1 PACARA 34 12 1.1 0.5 M 1 1 1 PACARA 35 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA										
32									1	PAULLO
30 10 0.4 0.2 M 1 1 1 PAULLO 32 10 0.6 0.3 H 1 1 1 JACAY 32 10 0.7 0.4 M 1 1 1 JACAY 33 9 0.7 0.4 H 1 1 1 JACAY 33 9 0.7 0.4 H 1 1 1 JACAY 33 10 0.8 0.4 H 1 1 1 CATAPAL 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 11 0 0.7 0.3 M 1 1 1 CATAPAL 33 12 0.6 0.3 M 1 1 1 CATAPAL 35.39 38 13 1.5 0.7 M 1 1 1 FORTALE 36 37 12 1.0 0.4 M 1 1 1 FORTALE 37 11 1.2 0.5 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 L CALTOP 38 12 0.9 0.4 H 1 1 L CALTOP 38 12 0.9 0.4 H 1 1 L CALTOP 38 12 0.9 0.4 H 1 1 L CALTOP 38 12 0.9 0.5 H 1 1 L LUNAHUA 36 12 0.9 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 1 JACAY 37 11 1.0 0.5 M 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA										
32 10 0.6 0.3 H 1 1 1 JACAYA 32 10 0.7 0.4 M 1 1 1 JACAYA 30 9 0.7 0.4 H 1 1 1 JACAYA 32 10 0.8 0.4 H 1 1 1 JACAYA 32 10 0.8 0.4 H 1 1 1 1 ACAYA 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 12 0.6 0.3 M 1 1 1 CATAPAL 35.39 38 13 1.5 0.7 M 1 1 1 FORTALE 38 13 1.2 0.5 H 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 21 0.8 0.4 H 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 LUNAHUA 36 12 0.9 0.4 H 1 1 1 LUNAHUA 37 12 1.0 0.6 H 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA								1		
32 10 0.7 0.4 M 1 1 1 1 JACAYA 30 9 0.7 0.4 H 1 1 1 1 JACAYA 32 10 0.8 0.4 H 1 1 1 1 PACARA 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 12 0.6 0.3 M 1 1 1 FORTALE 35.39 38 13 1.5 0.7 M 1 1 1 FORTALE 37 12 1.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 15 0.8 0.4 H 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 LUNAHUA 36 12 0.9 0.4 H 1 1 1 LUNAHUA 37 13 1.2 0.7 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 39 12 1.4 0.8 M 1 1 1 LUNAHUA 30 12 1.4 0.8 M 1 1 1 LUNAHUA 31 12 1.4 0.8 M 1 1 1 LUNAHUA 32 14 0.8 M 1 1 1 LUNAHUA 33 15 10 0.8 0.5 H 1 1 1 LUNAHUA 34 16 12 0.9 0.5 M 1 1 1 PACAYA 35 12 0.9 0.5 M 1 1 1 PACAYA 36 12 0.9 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 37 12 1.1 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 39 12 1.1 0.5 M 1 1 1 PACAYA 30 12 1.1 0.5 M 1 1 1 PACAYA 31 12 1.1 0.5 M 1 1 1 PACAYA									1	
30								1		
32 10 0.8 0.4 H 1 1 1 PACARA 33 10 0.7 0.3 M 1 1 1 CATAPAL 33 12 0.6 0.3 M 1 1 1 1 CATAPAL 35-39 38 13 1.5 0.7 M 1 1 1 FORTALE 38 13 1.2 0.5 H 1 1 1 FORTALE 38 12 1.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 PAMPILI 37 20 0.8 0.4 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 LUNAHUA 36 12 0.9 0.4 H 1 1 1 LUNAHUA 37 12 1.0 0.6 H 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 39 10 0.8 0.5 H 1 1 LUNAHUA 30 12 0.9 0.5 H 1 1 LUNAHUA 31 1 JACAYA 32 11 1.0 0.5 M 1 1 1 PACAYA 33 12 1.1 0.5 M 1 1 1 PACAYA 34 12 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAPA 38 12 1.1 0.5 M 1 1 1 PACAPA 37 11 1.0 0.5 M 1 1 1 PACAPA 38 12 1.1 0.5 M 1 1 1 PACAPA 37 11 1.0 0.5 M 1 1 1 PACAPA 38 12 1.1 0.5 M 1 1 1 PACAPA 39 11 1.0 0.5 M 1 1 1 PACAPA 30 12 1.1 0.5 M 1 1 1 PACAPA 31 11 1.0 0.5 M 1 1 1 PACAPA 32 11 1.0 0.5 M 1 1 1 PACAPA 33 12 1.1 0.5 M 1 1 1 PACAPA 34 15 15 16 MACHURA									1	JACAYA
35-39 38 13 1.5 0.7 M 1 1 1 FORTALE 38 13 1.2 0.5 H 1 1 1 FORTALE 38 12 1.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 CALTOP 38 12 0.8 0.4 H 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.8 0.4 M 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 FORTALE 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 0.9 0.4 H 1 1 1 LUNAHUA 35 12 0.9 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 LUNAHUA 37 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 39 10 0.8 0.5 H 1 1 1 LUNAHUA 31 1 JACAYA 32 13 14 0.9 0.5 M 1 1 1 JACAYA 33 15 10 0.8 0.5 M 1 1 1 PACAYA 34 12 1.2 0.7 H 1 1 PACAYA 35 11 1.0 0.5 M 1 1 1 PACAYA 36 12 0.9 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 39 11 1.0 0.5 M 1 1 1 PACAYA 30 12 1.1 0.5 M 1 1 1 PACAYA 31 12 1.1 0.5 M 1 1 1 PACAYA 32 13 14 1.0 0.5 M 1 1 1 PACAYA 33 15 12 0.9 0.5 M 1 1 1 PACAYA 34 15 15 0.9 0.5 M 1 1 1 PACAYA 35 16 0.5 M 1 1 1 PACAYA 36 17 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA										PACARAN
35-39 38 13 1.5 0.7 M 1 1 1 FORTALE 38 13 1.2 0.5 H 1 1 1 FORTALE 37 12 1.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPLL 37 20 2.8 1.6 H 1 1 1 PAMPLL 37 13 1.2 0.7 M 1 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 H 1 1 1 PAULL 38 12 1.0 0.6 H 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 LUNAHUA 37 13 12 0.9 0.5 H 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 39 10 0.8 0.5 H 1 1 LUNAHUA 30 12 0.9 0.5 M 1 1 1 PACAYA 31 13 12 0.9 0.5 M 1 1 1 PACAYA 32 13 14 0.5 M 1 1 1 PACAYA 33 15 16 0.9 0.5 M 1 1 1 PACAYA 34 17 18 1.0 0.5 M 1 1 1 PACAYA 35 17 18 1.0 0.5 M 1 1 1 PACAYA 36 18 19 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA 39 12 1.1 0.5 M 1 1 1 PACAYA 30 12 1.1 0.5 M 1 1 1 PACAYA 31 12 1.1 0.5 M 1 1 1 PACAYA 32 12 1.1 0.5 M 1 1 1 PACAYA 33 12 1.1 0.5 M 1 1 1 PACAYA 34 12 1.1 0.5 M 1 1 1 PACAYA 35 12 0.9 0.5 M 1 1 1 PACAYA 36 12 0.9 0.5 M 1 1 1 PACAYA 37 11 1.0 0.5 M 1 1 1 PACAYA 38 12 1.1 0.5 M 1 1 1 PACAYA		33	10	0.7	0.3	M	1	1		CATAPALI
38 13 1.2 0.5 H 1 1 1 FORTALE 37 12 1.0 0.4 M 1 1 1 FORTALE 38 12 1.3 0.8 H 1 1 1 FORTALE 37 11 1.2 0.7 H 1 1 1 FORTALE 37 15 0.8 0.4 H 1 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 35 12 0.9 0.4 H 1 1 1 SOCSI 37 12 1.0 0.6 H 1 1 1 LUNAHUA 35 12 0.9 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 39 12 1.1 0.5 M 1 1 1 PACARA 30 12 0.9 0.5 M 1 1 1 PACARA 31 12 1.1 0.5 M 1 1 1 PACARA 31 12 1.1 0.5 M 1 1 1 PACARA 32 12 1.1 0.5 M 1 1 1 PACARA 33 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 1 PACARA 36 12 0.9 0.5 M 1 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 PACARA 39 12 1.1 0.5 M 1 1 1 PACARA 30 12 0.9 0.5 M 1 1 1 1 PACARA 31 12 0.9 0.5 M 1 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 1 PACARA 36 12 0.9 0.5 M 1 1 1 1 PACARA 37 12 0.9 0.5 M 1 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 MACHURA		33	12	0.6	0.3	M	1	1		CATAPALL
37 12 1.0 0.4 M 1 1 FORTALE 38 12 1.3 0.8 H 1 1 FORTALE 37 11 1.2 0.7 H 1 1 FORTALE 37 15 0.8 0.4 H 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 CALTOP 38 12 1.0 0.6 M 1 1 CALTOP 35 12 0.9 0.4 H 1 1 SOCSI 37 12 1.0 0.6 H 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 LUNAHUA 36	35-39	38	13	1.5	0.7	M	1	1		FORTALEZ
38 12 1.3 0.8 H 1 1 FORTALE 37 11 1.2 0.7 H 1 1 FORTALE 37 15 0.8 0.4 H 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 CALTOP 38 12 1.0 0.6 M 1 1 CALTOP 35 12 0.9 0.4 H 1 1 CALTOP 35 12 0.9 0.4 H 1 1 PAULLO 38 12 1.0 0.6 H 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 LUNAHUA 36		38	13	1.2	0.5	Н	1		1	FORTALEZ
37 11 1.2 0.7 H 1 1 FORTALE 37 15 0.8 0.4 H 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 CALTOP 38 12 1.0 0.6 M 1 1 CALTOP 35 12 0.9 0.4 H 1 1 CALTOP 35 12 0.9 0.4 H 1 1 SOCSI 37 12 1.0 0.6 H 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 JACAYA 38		37	12	1.0	0.4	M	1	1		FORTALEZ
37 15 0.8 0.4 H 1 1 PAMPILI 37 20 2.8 1.6 H 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 CALTOP 38 12 1.0 0.6 M 1 1 CALTOP 35 12 0.9 0.4 H 1 1 SOCSI 37 12 1.0 0.6 H 1 1 PAULLO 38 12 1.4 0.8 M 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 M 1 1 JACAYA 36 12 0.9 0.5 M 1 1 JACAYA 38 <		38	12	1.3	0.8	Н	1		1	FORTALEZ
37 20 2.8 1.6 H 1 1 PAMPILI 37 13 1.2 0.7 M 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 CALTOP 38 12 1.0 0.6 M 1 1 CALTOP 35 12 0.9 0.4 H 1 1 SOCSI 37 12 1.0 0.6 H 1 1 PAULLO 38 12 1.4 0.8 M 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 JACAYA 36 12 0.9 0.5 M 1 1 JACAYA 38 12 1.2 0.7 H 1 1 JACAYA 38 <t< td=""><td></td><td>37</td><td>11</td><td>1.2</td><td>0.7</td><td>Н</td><td>1</td><td></td><td>1</td><td>FORTALEZ</td></t<>		37	11	1.2	0.7	Н	1		1	FORTALEZ
37 13 1.2 0.7 M 1 1 1 A.HUNGA 35 12 0.8 0.4 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 35 12 0.9 0.4 H 1 1 1 SOCSI 37 12 1.0 0.6 H 1 1 1 LUNAHUA 38 12 1.4 0.8 M 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.9 0.5 M 1 1 1 PACARA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 1.1 0.5 M 1 1 1 MACHURA		37	15	0.8	0.4	Н	1		1	PAMPILL
35 12 0.8 0.4 M 1 1 1 CALTOP 38 12 1.0 0.6 M 1 1 1 CALTOP 35 12 0.9 0.4 H 1 1 1 SOCSI 37 12 1.0 0.6 H 1 1 1 SOCSI 38 12 1.4 0.8 M 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 0.9 0.5 M 1 1 1 MACHURA		37	20	2.8	1.6	Н	1		1	PAMPILLA
38 12 1.0 0.6 M 1 1 1 CALTOP 35 12 0.9 0.4 H 1 1 1 SOCSI 37 12 1.0 0.6 H 1 1 1 PAULLO 38 12 1.4 0.8 M 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 PACARA 37 12 0.9 0.5 M 1 1 1 MACHURA		37	13	1.2	0.7	M	1	1		A.HUNGAF
35 12 0.9 0.4 H 1 1 1 SOCSI 37 12 1.0 0.6 H 1 1 1 PAULLO 38 12 1.4 0.8 M 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 38 12 0.9 0.5 M 1 1 1 PACARA 37 12 0.9 0.5 M 1 1 1 MACHURA		35	12	0.8	0.4	M	1	1		CALTOPA
37 12 1.0 0.6 H 1 1 PAULLO 38 12 1.4 0.8 M 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 JACAYA 36 12 0.9 0.5 M 1 1 JACAYA 38 12 1.2 0.7 H 1 1 JACAYA 37 11 1.0 0.5 M 1 1 PACARA 37 12 1.1 0.5 M 1 1 PACARA 35 12 0.9 0.5 M 1 1 MACHURA		38	12	1.0	0.6	M	1	1		CALTOPA
38 12 1.4 0.8 M 1 1 1 LUNAHUA 35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		35	12	0.9	0.4	Н	1		1	SOCSI
35 10 0.8 0.5 H 1 1 1 LUNAHUA 36 12 0.9 0.5 H 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		37	12	1.0	0.6	Н	1		1	PAULLO
36 12 0.9 0.5 H 1 1 1 JACAYA 36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		38	12	1.4	0.8	M	1	1		LUNAHUAN
36 12 0.9 0.5 M 1 1 1 JACAYA 38 12 1.2 0.7 H 1 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		35	10	0.8	0.5	Н	1		1	LUNAHUAN
38 12 1.2 0.7 H 1 1 JACAYA 37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		36	12	0.9	0.5	Н	1		1	JACAYA
37 11 1.0 0.5 M 1 1 1 PACARA 37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA				0.9		M		1		JACAYA
37 12 1.1 0.5 M 1 1 1 PACARA 35 12 0.9 0.5 M 1 1 1 MACHURA		38		1.2	0.7	Н			1	JACAYA
35 12 0.9 0.5 M 1 1 MACHURA		37		1.0	0.5	M				PACARAN
										PACARAN
39 14 1.2 0.7 H 1 1 ZUÑIGÆ								1		MACHURAN
		39	14	1.2	0.7	Н	1		1	ZUÑIGA

40-44	40	17	1.5	0.9	M	1	1		FORTALEZA
	43	18	2.8	1.2	M	1	1		PAMPILLA
	44	15	1.9	1.1	H	1		1	PAMPILLA
	44	15	2.2	1.2	Н	1		1	PAMPILLA
	44	17	1.9	1.0	Н	1		1	PAMPILLA
	43	15	1.9	1.1	M	1	1		A.HUNGARA
	43	15	1.7	0.9	Н	1		1	A.HUNGARA
	40	15	1.2	0.6	Н	1		1	A.HUNGARA
	40	15	1.3	0.7	Н	1		1	A.HUNGARA
	43	15	1.3	0.9	Н	1		1	CONCON
	42	15	1.6	0.9	M	1	1		CONCON
	40	13	1.2	0.7	M	1	1		CONCON
	43	13	1.4	0.9	M	1	1		CONCON
	44	15	2.0	1.0	H	1		1	CALTOPA
	44	15	2.0	1.0	H	1		1	CALTOPA
	43	16	2.1	1.0	M	1	1		CALTOPA
	43	16	1.6	0.9	H	1		1	CALTOPA
	42	15	1.3	0.7	H	1		1	CALTOPA
	40	14	1.3	0.7	H	1		1	CALTOPA
	40	14	1.2	0.6	M	1	1		CALTOPA
	40	14	1.3	0.7	Н	1		1	SOCSI
	42	13	1.8	1.1	M	1	1		SOCSI
	43	15	1.8	1.0	M	1	1		SOCSI
	40	15	1.6	0.8	Н	1		1	PAULLO
	42	15	1.6	0.8	M	1	1		PAULLO
	42	14	1.6	0.9	Н	1		1	PAULLO
	43	15	1.8	0.9	Н	1		1	LUNAHUAN
	43	17	2.1	1.0	Н	1		1	LUNAHUANA
	41	14	1.3	0.8	M	1	1		LUNAHUANA
	42	16	1.7	1.0	M	1	1		LUNAHUAN
	40	15	1.4	0.8	Н	1		1	LUNAHUAN
	44	13	1.9	1.0	Н	1		1	JACAYA
	43	15	1.5	0.9	M	1	1		PACARAN
	40	14	1.7	0.9	Н	1		1	PACARAN
	43	15	1.6	0.9	Н	1		1	CATAPALLA
	43	15	1.6	0.4	Н	1		1	ZUÑIGA
45-49	46	16	2.3	1.2	Н	1		1	FORTALEZA
	45	15	1.7	0.9	M	1	1		FORTALEZA
	45	15	3.0	1.6	M	1	1		PAMPILLA
	45	16	2.2	1.2	Н	1		1	PAMPILLA
	45	15	1.9	1.1	Н	1		1	PAMPILLA
	45	15	2.1	1.1	Н	1		1	PAMPILLA
	48	15	3.0	1.6	Н	1		1	PAMPILLA
	48	20	3.0	1.8	Н	1		1	PAMPILLA
	47	18	2.7	1.3	M	1	1		PAMPILLA
		15	2.3	1.1	M	1	1		PAMPILLA
	45	10	2.0		Н	1	•	1	PAMPILLA
	45 45	18	3 3		11			•	THIN EET
	45	18 15	3.3	1.7	н	1		1	РАМРПІА
	45 45	15	2.0	1.0	H M	1	1	1	PAMPILLA PAMPILLA
	45 45 45	15 15	2.0 1.1	1.0 0.5	M	1	1		PAMPILLA
	45 45 45 48	15 15 16	2.0 1.1 3.0	1.0 0.5 1.6	M H	1 1	1	1	PAMPILLA PAMPILLA
	45 45 45 48	15 15 16 16	2.0 1.1 3.0 3.1	1.0 0.5 1.6 1.4	М Н Н	1 1 1	1	1	PAMPILLA PAMPILLA LUCUMO
	45 45 45 48 48	15 15 16 16	2.0 1.1 3.0 3.1 1.9	1.0 0.5 1.6 1.4 1.9	М Н Н Н	1 1 1	1	1 1 1	PAMPILLA PAMPILLA LUCUMO LUCUMO
	45 45 45 48 48 45	15 15 16 16 16 17	2.0 1.1 3.0 3.1 1.9 2.3	1.0 0.5 1.6 1.4 1.9	М Н Н Н	1 1 1 2		1	PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO
	45 45 45 48 48 45 45	15 15 16 16 16 17 18	2.0 1.1 3.0 3.1 1.9 2.3 2.6	1.0 0.5 1.6 1.4 1.9 1.2	М Н Н Н Н	1 1 1 2 1	1	1 1 1	PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO A HUNGARA
	45 45 45 48 48 45 45 45 48	15 15 16 16 16 17 18	2.0 1.1 3.0 3.1 1.9 2.3 2.6 3.5	1.0 0.5 1.6 1.4 1.9 1.2 1.5	М Н Н Н Н	1 1 1 2 1	1	1 1 1	PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO A HUNGARA A HUNGARA
	45 45 45 48 48 45 45 45 48 48 48	15 15 16 16 16 17 18 17	2.0 1.1 3.0 3.1 1.9 2.3 2.6 3.5 2.8	1.0 0.5 1.6 1.4 1.9 1.2 1.5 1.3	М Н Н Н Н М Н	1 1 1 1 2 1 1	1	1 1 1	PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO A HUNGARA A HUNGARA A HUNGARA
	45 45 45 48 48 45 45 45 48	15 15 16 16 16 17 18	2.0 1.1 3.0 3.1 1.9 2.3 2.6 3.5	1.0 0.5 1.6 1.4 1.9 1.2 1.5	М Н Н Н Н	1 1 1 2 1	1	1 1 1	PAMPILLA PAMPILLA LUCUMO LUCUMO

1	46	16	2.0	1.1	Н	1		1	CONCON
	46	17	2.2	1.1	M	1	1	-	CONCON
	45	16	1.6	0.9	M	1	1		CONCON
	47	16	2.6	1.2	M	1	1		CONCON
	47	15	1.9	1.0	Н	1	_	1	CONCON
	45	15	1.8	1.1	Н	1		1	CONCON
	46	15	2.0	1.2	Н	1		1	CONCON
	48	17	2.3	1.2	Н	1		1	CONCON
	47	16	2.7	1.3	M	1	1		CONCON
	48	15	2.3	1.2	Н	1		1	CONCON
	47	16	2.7	1.2	M	1	1		CONCON
	45	16	2.0	1.1	M	1	1		CONCON
	45	16	2.2	1.1	Н	1		1	CONCON
	45	15	1.9	1.0	Н	1		1	SOCSI
	46	17	2.2	1.2	M	1	1		SOCSI
	45	15	2.3	1.2	Н	1		1	SOCSI
	48	17	2.4	1.2	Н	1		1	SOCSI
	47	17	2.5	1.4	Н	1		1	SOCSI
	48	16	2.8	1.4	Н	1		1	PAULLO
	48	18	2.7	1.4	Н	1		1	PAULLO
	49	18	3.0	1.6	M	1	1		PAULLO
	48	17	2.4	1.3	Н	1		1	PAULLO
	47	17	1.8	1.2	M	1	1		PAULLO
	45	15	1.9	1.0	Н	1		1	PAULLO
	48	17	2.5	1.3	M	1	1		LUNAHUANA
	48	17	2.7	1.4	M	1	1		LUNAHUANA
	48	15	3.0	1.4	Н	1		1	LUNAHUANA
	47	16	2.3	1.3	Н	1		1	LUNAHUANA
	48	17	2.3	1.3	Н	1		1	LUNAHUANA
	48	17	2.7	1.6	M	1	1		LUNAHUANA
	45 47	17	2.0	1.1	M	1	1	1	JACAYA
		16	2.2	1.2	Н	1 1		1	JACAYA JACAYA
	48 48	16 16	2.5 2.3	1.2 1.2	M H	1	1	1	PACARAN
	48	15	2.4	1.2	н Н	1		1	HUAGIL
	48	20	2.3	1.2	Н	1		1	HUAGIL
	45	17	2.0	1.0	M	1	1	1	MACHURANGA
	47	17	2.2	1.1	Н	1	•	1	MACHURANGA
	45	15	1.7	1.0	Н	1		1	ZUÑIGA
	47	17	2.3	1.2	M	1	1		ZUÑIGA
	47	17	2.4	1.3	M	1	1		ZUÑIGA
	47	20	2.4	1.3	M	1	1		ZUÑIGA
	48	18	2.5	1.3	Н	1		1	CAPILLUCAS
							41	61]
50-54	52	20	4	1.8	M	1	1		FORTALEZA
	50	20	3.1	1.6	Н	1		1	FORTALEZA
	52	20	3	1.7	M	1	1		FORTALEZA
	53	20	2.7	1.9	Н	1		1	FORTALEZA
	52	20	3.7	1.7	M	1	1		FORTALEZA
	52	20	3.3	1.6	Н	1		1	FORTALEZA
	52	20	3.2	1.4	Н	1		1	FORTALEZA
1	50	20	3.7	1.6	Н	1		1	FORTALEZA
1	50	18	3.2	1.7	Н	1		1	PAMPILLA
1	51	16	3.7	1.9	Н	1		1	PAMPILLA
1	50 50	15	3.2	1.7	Н	1		1	PAMPILLA
1	50 50	15	3.2	1.7	H M	1	1	1	PAMPILLA PAMPILLA
1	50 50	30 18	2.9 2.9	1.5 1.6	M H	1	1	1	PAMPILLA PAMPILLA
1	50 52	18 17	2.9 3.7	1.6	H H	1		1	PAMPILLA PAMPILLA
1	52	20	2.9	1.9	н Н	1		1	PAMPILLA
1	50	20	3.7	1.6	M	1	1	1	PAMPILLA
I	30	20	3./	1.0	IVI	1	1		I AWIFILLA

	50	18	2.7	1.2	M	1	1		LUCUMO
	53	20	4.1	1.3 2.0	M H	1	1	1	LUCUMO
	52	18	3.0	1.6	Н	1		1	A.HUNGARA
	52	20	3.0	1.4	Н	1		1	A.HUNGARA
	50	18	2.9	1.4	Н	1		1	A.HUNGARA
	50	17	2.8	1.5	Н	1		1	A.HUNGARA
	50	17	3.0	1.5	Н	1		1	A.HUNGARA
	51	18	3.1	1.3	Н	1		1	A.HUNGARA
	60				н Н	1		1	A.HUNGARA A.HUNGARA
	52	18 20	3.1 3.4	1.6 1.8	Н	1		1	CONCON
	54	20	4.2	1.9	Н	1		1	CONCON
	53	20	3.4		M	1	1	1	CONCON
	52	20	3.4	1.6 1.7	Н	1	1	1	CONCON
	52	20	3.2	1.6	M	1	1	1	CONCON
	52	20	3.6	1.7	M	1	1		CONCON
					M	1	1		
	50	18	2.8	1.4		1	1		CONCON
	50	18	2.7	1.6	M		1		CONCON
	50	17	2.8	1.5	M	1			CONCON
	50 52	17	2.4	1.4	M	1	1 1		CONCON
	52	20	3.0	1.5	M	1			CALTOPA
	50	17	2.8	1.5	M	1	1		CALTOPA
	51	20	3.7	1.8	M	1	1	1	CALTOPA
	50	17	2.7	1.3	Н	1	4	1	SOCSI
	50	20	3.0	1.4	M	1	1		SOCSI
	52	20	3.2	1.6	Н	1	_	1	SOCSI
	50	17	3.0	1.5	M	1	1		SOCSI
	50	17	2.4	1.3	M	1	1		SOCSI
	52	17	3.0	1.7	Н	1		1	SOCSI
	52	17	3.3	1.7	Н	1		1	SOCSI
	52	13	3.1	1.5	M	1	1		SOCSI
	50	20	3.2	1.5	M	1	1		SOCSI
	52	18	3.1	1.5	Н	1		1	SOCSI
	53	18	3.3	1.8	M	1	1		SOCSI
	52	20	3.7	2.0	Н	1		1	SOCSI
	52	18	3.0	1.6	M	1	1		SOCSI
	53	18	3.2	1.6	M	1	1		PAULLO
	50	18	3.0	1.6	Н	1		1	PAULLO
	51	17	3.2	1.7	Н	1		1	PAULLO
	50	18	3.3	1.7	M	1	1		PAULLO
	51	20	3.7	1.9	M	2	1		LUNAHUANA
	50	17	2.9	1.6	M	1	1		LUNAHUANA
	53	20	3.0	1.6	M	1	1		LUNAHUANA
	50	18	2.9	1.5	Н	1		1	JACAYA
	54	20	3.2	1.7	Н	1		1	JACAYA
	50	20	3.2	1.7	Н	1		1	JACAYA
	52	20	3.1	1.6	M	1	1		PACARAN
	50	13	2.7	1.6	Н	1		1	CATAPALLA
	50	18	2.9	1.6	Н	1		1	CATAPALLA
	54	20	3.0	1.6	Н	1		1	CATAPALLA
	53	20	3.8	1.9	Н	1		1	CATAPALLA
	50	20	2.7	1.4	M	1	1		HUAGIL
	54	20	4.1	2.2	Н	1		1	MACHURANGA
	50	18	3.2	1.7	M	1	1		ZUÑIGA
55-59	58	23	5.5	2.5	M	1	1		FORTALEZA
	55	20	3.9	1.8	M	2	1		FORTALEZA
	58	17	4.2	2.2	Н	1		1	FORTALEZA
	57	22	4.1	2.0	M	1	1		FORTALEZA

1									1
	57	21	4.8	2.4	Н	2		1	PAMPILLA
	55	19	4.7	2.3	Н	2		1	PAMPILLA
	55	25	4.2	2.1	Н	1		1	PAMPILLA
	55	20	4.3	1.7	M	1	1		PAMPILLA
	55	20	3.9	2.0	H	1		1	PAMPILLA
	57	20	4.9	2.3	M	1	1		PAMPILLA
	55	20	4.7	2.3	Н	1		1	PAMPILLA
	58	20	3.0	1.5	M	1	1		PAMPILLA
	58	20	2.5	1.4	Н	1		1	PAMPILLA
	55	20	4.6	2.1	M	1	1		PAMPILLA
	58	20	5.2	2.6	Н	1		1	PAMPILLA
	58	20	4.2	2.0	Н	1		1	PAMPILLA
	55	20	3.8	2.0	M	1	1		PAMPILLA
	55	17	3.7	1.9	Н	1		1	PAMPILLA
	55	20	3.8	2.0	Н	1		1	PAMPILLA
	55	18	3.7	1.9	M	1	1		PAMPILLA
	55	20	4.3	2.2	Н	1		1	A.HUNGARA
	56	20	4.3	2.2	M	1	1	-	CONCON
	55	21	4.0	1.9	M	1	1		CONCON
	55	20	4.3	2.0	Н	1	•	1	CONCON
	55	20	4.0	1.9	Н	1		1	CALTOPA
		20	4.2	2.2	M	1	1	1	
	55						1	1	CALTOPA
	55	20	4.2	2.4	Н	1		1	CALTOPA
	55	20	5.0	2.2	M	1	1		SOCSI
	55	20	3.9	2.0	M	1	1		SOCSI
	59	20	4.4	2.5	M	1	1		PAULLO
	57	20	4.3	2.1	M	1	1		LUNAHUANA
	58	22	4.8	2.6	M	1	1		LUNAHUANA
	55	20	3.6	1.8	M	1	1		JACAYA
	55 = 0	20	4.3	2.3	Н	1		1	JACAYA
	58	20	5.3	2.7	M	1	1		JACAYA
	58	24	4.2	2.2	M	1	1		PACARAN
	58	20	4.2	2.2	M	1	1		CATAPALLA
	55	20	3.7	2.1	H	1		1	CATAPALLA
	57	22	3.7	1.9	Н	1		1	MACHURANGA
	58	20	4.0	2.0	Н	1		1	MACHURANGA
	58	21	4.4	2.4	M	2	1		ZUÑIGA
	56	20	1.1	2.3	Н	2		1	CAPILLUCAS
								=0	- 1
							53	59	4
						_			
60-64	62	25	7.3	3.0	M	2	1		FORTALEZA
	60	22	6.0	2.3	M	2	1		FORTALEZA
	64	25	8.2	3.1	M	2	1		FORTALEZA
	60	22	6.1	3.3	Н	2		1	FORTALEZA
	60	20	4.8	2.2	Н	2		1	FORTALEZA
	60	22	6.6	3.0	M	2	1		FORTALEZA
	64	27	7.4	3.4	M	2	1		FORTALEZA
	60	23	5.3	2.6	H	2		1	FORTALEZA
	60	18	3.0	1.6	H	1		1	FORTALEZA
	62	25	5.4	2.7	M	2	1		FORTALEZA
	60	22	6.2	2.7	Н	1		1	PAMPILLA
	60	25	7.2	3.0	M	2	1		PAMPILLA
	63	25	6.9	3.2	Н	2		1	PAMPILLA
	62	23	5.8	2.9	Н	2		1	PAMPILLA
	60	22	5.5	2.5	Н	2		1	PAMPILLA
	60	20	5.4	2.8	Н	2		1	PAMPILLA
	62	21	6.2	3.0	Н	1		1	PAMPILLA
	60	22	5.5	3.8	Н	1		1	PAMPILLA
1	00	22	0.0						
								1	
	60 60	20 20	5.3 5.2	2.4	H H	2 2		1 1	PAMPILLA PAMPILLA

1									
	60	22	5.6	2.8	Н	2		1	LUCUMO
	60	22	5.4	2.7	M	2	1		LUCUMO
	60	22	5.8	2.8	Н	1		1	LUCUMO
	60	24	7.3	2.8	Н	2		1	LUCUMO
	62	22	6.6	3.0	Н	2		1	LUCUMO
	60	22	5.1	2.7	Н	2		1	LUCUMO
	60	22	6.2	2.9	Н	2		1	LUCUMO
	60	20	5.6	2.7	Н	2		1	LUCUMO
	60	22	4.9	2.4	Н	2		1	LUCUMO
	62	20	6.5	3.2	Н	2		1	LUCUMO
	63	23	5.9	2.9	M	2	1		A. HUNGARA
	63	23	7.4	3.4	Н	2		1	A. HUNGARA
	60	23	6.3	2.9	M	2	1		A. HUNGARA
	60	22	5.5	2.6	Н	1		1	A. HUNGARA
	60	23	4.9	2.6	M	2	1		A. HUNGARA
	60	22	4.7	2.6	Н	1		1	A. HUNGARA
	60	23	5.4	2.4	M	1	1	•	A. HUNGARA
	60	22	5.6	2.8	Н	1	1	1	CONCON
	63	25	6.6	2.7	M	1	1	1	CONCON
	62	23	6.7	3.6	M	1	1		CONCON
	62	25	5.4	2.8	M	1	1		CONCON
	60	20	5.8	3.1	Н	1	_	1	CALTOPA
	62	24	6.6	2.8	M	1	1		CALTOPA
	62	23	6.8	3.0	M	1	1		CALTOPA
	60	22	5.8	2.9	Н	1		1	SOCSI
	63	23	5.6	2.9	M	1	1		SOCSI
	62	23	5.4	2.8	Н	1		1	SOCSI
	63	24	6.5	3.0	M	1	1		SOCSI
	64	25	7.0	3.3	M	2	1		PAULLO
	64	25	6.5	3.1	M	2	1		PAULLO
	62	25	5.8	3.0	M	2	1		PAULLO
	61	22	6.1	3.1	M	2	1		PAULLO
	60	22	5.6	2.5	M	2	1		PAULLO
	60	23	5.1	2.5	M	1	1		PAULLO
	63	23	6.3	3.0	M	1	1		LUNAHUANA
	60	22	5.7	3.6	M	1	1		LUNAHUANA
	62	17	3.7	1.9	M	1	1		LUNAHUANA
	64	22	6.7	3.3	M	2	1		JACAYA
	64	25	5.5	3.0	M	1	1		MACHURANGA
	60	23	4.6	2.4	M	2	1		ZUÑIGA
	61	23	5.6	2.9	Н	1		1	ZUÑIGA
	62	23	5.8	3.0	Н	1		1	ZUÑIGA
	63	23	6.1	3.0	M	1	1		ZUÑIGA
	62	27	9.0	4.4	M	2	1		ZUÑIGA
	60	23	4.7	2.4	Н	2	1	1	CAPILLUCAS
	00	23	4.7	2.4	11	2		1	CALIEDOCAS
(5.00	60	27	0.6	7.1		2			EODTALEZA
65-69	68	27	9.6	7.1	M	2	1		FORTALEZA
	68	28	9.7	3.9	M	2	1		PAMPILLA
	69	25	8.6	4.0	M	2	1		PAMPILLA
	67	26	7.7	3.6	M	2	1		PAMPILLA
	68	26	8.7	3.4	M	2	1		PAMPILLA
	65	25	9.2	3.8	M	2	1		PAMPILLA
	67	25	8.0	3.8	M	2	1		PAMPILLA
	69	22	8.7	3.8	M	2	1		PAMPILLA
1	65	25	6.9	3.1	M	2	1		PAMPILLA
	67	27	7.0	3.3	M	2	1		PAMPILLA
				5.4	M	2	1		PAMPILLA
	67	30	15.7	5.4					
	67 68	30 25	15.7 8.0	3.7	Н	2		1	PAMPILLA
					H H	2 2		1 1	PAMPILLA PAMPILLA
	68 68	25 25	8.0 8.7	3.7		2	1		
	68 68 66	25 25 24	8.0 8.7 7.9	3.7 4.3	Н		1 1		PAMPILLA
	68 68	25 25	8.0 8.7	3.7 4.3 4.0	H M	2 2			PAMPILLA PAMPILLA

	68	25	11.5	4.5	M	2	1		LUCUMO
	65	24	7.9	3.9	Н	2		1	LUCUMO
	68	25	7.2	3.4	Н	2		1	LUCUMO
	65	23	7.9	3.4	Н	2		1	LUCUMO
	68	25	9.0	3.3	M	2	1		LUCUMO
	67	26	8.6	3.6	M	2	1		LUCUMO
	67	25	8.9	4.1	Н	2		1	LUCUMO
	67	25	7.2	3.2	M	2	1		LUCUMO
	65	25	7.1	3.0	M	2	1		LUCUMO
	67	25	8.0	3.3	Н	2		1	LUCUMO
	69	2.6	8.0	3.7	M	2	1	-	A.HUNGARA
	65	25	7.2	3.4	M	2	1		A.HUNGARA
	68	25	8.8	3.8	M	2	1		A.HUNGARA
		23				2	1		
	65		7.6	3.3	M				A.HUNGARA
	65	25	7.3	3.3	M	2	1		A.HUNGARA
	66	25	7.7	3.3	M	2	1		A.HUNGARA
	68	23	4.7	2.6	M	1	1		A.HUNGARA
	68	23	6.2	2.9	M	2	1		A.HUNGARA
	67	20	4.6	2.2	M	2	1		A.HUNGARA
	67	22	4.5	2.2	M	1	1		A.HUNGARA
	65	20	3.6	1.7	Н	1		1	A.HUNGARA
	65	20	3.7	1.9	M	1	1		A.HUNGARA
	65	25	8.2	3.6	M	2	1		CALTOPA
	65	23	6.6	3.5	Н	2		1	CALTOPA
	68	25	7.8	3.8	M	2	1		CALTOPA
	67	25	7.9	3.4	M	2	1		CALTOPA
	67	26	7.2	3.7	M	2	1		CALTOPA
	66	25	7.3	3.5	M	2	1		CALTOPA
	66	27	7.4	3.2	M	1	1		SOCSI
	68	26	7.4	3.8	M	1	1		SOCSI
	68	25	7.5	3.8	Н	1		1	SOCSI
	68	25	7.3	3.3	M	2	1	•	PAULLO
	65	25	8.0	3.7	M	2	1		PAULLO
	65	25	6.5	3.3	M	2	1		PAULLO
	68	25	7.4	3.8	M	2	1		PAULLO
							1		PAULLO
	68	28	7.3	3.7	M	2			PAULLO
	68	27	9.0	4.0	M	2	1		
	65	25	8.2	3.6	M	2	1		PAULLO
	68	25	7.2	3.3	M	2	1		PAULLO
	68	28	7.4	3.6	Н	1		1	LUNAHUANA
	68	24	6.7	3.7	Н	2		1	JACAYA
	65	25	5.7	3.2	Н	2		1	JACAYA
	65	25	6.8	3.3	M	2	1		JACAYA
	68	23	6.1	3.7	M	1	1		HUAGIL
	67	25	7.5	3.7	M	2	1		HUAGIL
	65	25	6.2	3.2	Н	1		1	ZUÑIGA
	67	25	6.3	3.3	M	2	1		ZUÑIGA
	67	27	6.2	2.5	M	1	1		ZUÑIGA
	68	25	7.1	4.1	M	1	1		ZUÑIGA
	67	27	8.4	4.6	M	2	1		ZUÑIGA
									7
							86	46	1
70-74	72	28	9.6	4.2	M	2	1		FORTALEZA
- 1	72	28	10.0	3.9	M	2	1		FORTALEZA
	74	28	10.0	4.3	M	2	1		FORTALEZA
	70	30	9.6	3.6	M	2	1		FORTALEZA
							1		
	72	28	9.4	4.4	M	2			FORTALEZA
	70	27							
	70 73	27 28	9.1 10.4	4.0 4.8	M H	2 2	1	1	FORTALEZA PAMPILLA

	72	30	12.9	5.0	M	2	1		LUCUMO
	70	28	8.7	4.1	Н	2		1	LUCUMO
	70	25	9.1	4.2	M	2	1		LUCUMO
	70	22	9.1	4.2	Н	1	•	1	LUCUMO
	70	30	10.7	4.1	M	2	1	1	LUCUMO
							1		
	70	25	9.4	4.1	H	2		1	LUCUMO
	72	27	10.5	5.1	Н	2		1	LUCUMO
	73	30	13.2	5.7	M	2	1		LUCUMO
	70	30	11.3	4.7	M	2	1		LUCUMO
	70	30	11.5	5.2	M	2	1		LUCUMO
	70	30	11.0	4.7	M	2	1		LUCUMO
	70	27	10.5	4.7	M	2	1		LUCUMO
	70	26	10.1	4.7	M	2	1		LUCUMO
	73	27	10.0	4.4	Н	2		1	LUCUMO
	70	26	10.0	4.0	Н	2		1	LUCUMO
	70	28	8.9	4.0	M	2	1		A.HUNGARA
	70	27	10.7	4.3	M	2	1		A.HUNGARA
	72	35	10.4	4.5	M	2	1		A.HUNGARA
	70	29	9.6	4.2	M	2	1		A.HUNGARA
	70	26	8.7	3.7	M	2	1		A.HUNGARA
	70	27	7.6	3.6	M	2	1		A.HUNGARA
	70	28	9.2	3.0	M	2	1		A.HUNGARA
	74	30	10.6	5.0	M	2	1		CONCON
	70	27	8.5	4.1	M	2	1		CONCON
	70	27	8.9	3.7	M	2	1		CONCON
	70	27	8.6	3.5	M	2	1		CONCON
	73	28	9.7	4.2	M	2	1		CONCON
	70	22	9.7	4.1	M	2	1		CONCON
	70	27	8.2	3.8	Н	1		1	CONCON
	70	28	9.4	4.4	M	2	1		CONCON
	70	27	8.5	3.6	M	1	1		CONCON
	70	27	9.3	3.9	M	1	1		CONCON
	73	28	10.3	4.7	M	2	1		CONCON
	70	27	7.9	3.7	M	2	1		CALTOPA
	70	25	8.9	3.6	M	2	1		CALTOPA
	72	30	10.7	4.6	M	2	1		CALTOPA
	72	28	10.0	4.5	M	2	1		CALTOPA
	70	25	7.8	3.7	M	2	1		SOCSI
	73	28	11.4	5.0	M	2	1		SOCSI
	73	28	11.4	5.1	M	2	1		PAULLO
	70	27	8.6	4.1	M	2	1		PAULLO
	74	28	4.0	4.4	M	2	1		PAULLO
	73	30	9.6	4.4	M	2	1		PAULLO
	74	30	11.6	4.8	M	2	1		LUNAHUANA
	74	28	11.0	4.8	M	2	1		LUNAHUANA
	74	28	9.2	4.5	M	2	1		LUNAHUANA
	71	28	19.7	4.5	M	1	1		LUNAHUANA
	70	27	8.3	3.7	M	1	1		LUNAHUANA
	70	28	8.2	3.8	Н	2		1	JACAYA
	72	28	9.1	4.4	M	2	1		JACAYA
	74	30	10.0	4.6	M	2	1		CATAPALLA
	70	28	8.0	4.1	M	2	1		CATAPALLA
	73	28	8.6	4.5	M	2	1		HUAGIL
	70	25	8.5	4.4	M	2	1		HUAGIL
	70	27	9.5	4.4	M	2	1		ZUÑIGA
	72	27	9.3	4.3	M	2	1		ZUÑIGA
	-	_ -				_	•		
75-79	75	30	12.4	5.1	M	3	1		FORTALEZA
13-17									
	78	30	12.9	5.3	M	2	1		FORTALEZA
	78	32	13.7	6.2	M	2	1		FORTALEZA
	76	30	13.1	4.8	M	2	1		FORTALEZA
	77	30	12.7	5.2	M	2	1		FORTALEZA
	78	30	14.3	5.9	M	2	1		FORTALEZA
	77	30	12.2	5.1	M	2	1		FORTALEZA
	78	37	11.8	4.5	M	2	1		FORTALEZA
	76	28	12.5	5.9	Н	2		1	PAMPILLA
	75	22	12.3	4.9	M	2	1		PAMPILLA

75 28 11.8 5.6 H 2 1 77 30 10.8 5.1 M 2 1 76 28 11.5 5.2 M 2 1 78 30 16.2 5.4 M 2 1 76 30 11.5 5.0 M 2 1 76 30 12.0 5.4 M 2 1 78 30 12.1 5.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 12.2 5.1 M 2 1 77 30 12.2 5.4 M 2 1 78 30 12.2 5.4 M 2 1	LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
76 28 11.5 5.2 M 2 1 78 30 16.2 5.4 M 2 1 76 30 11.5 5.0 M 2 1 76 30 12.0 5.4 M 2 1 78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 12.2 5.4 M 2 1 78 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 77 30 12.8 6.0 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA
78 30 16.2 5.4 M 2 1 76 30 11.5 5.0 M 2 1 76 30 12.0 5.4 M 2 1 78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 12.1 5.3 M 2 1 77 30 12.2 5.1 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 77 30 12.8 6.0 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA
76 30 11.5 5.0 M 2 1 76 30 12.0 5.4 M 2 1 78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 12.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.3 5.7 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA
76 30 12.0 5.4 M 2 1 78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 77 30 12.8 6.0 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA
78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 77 30 12.8 6.0 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 78 30 12.6 5.2 M 1 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA
78 30 13.8 6.1 M 2 1 77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 76 30 12.8 6.0 M 2 1 77 30 13.9 5.6 M 2 1 77 30 13.3 5.6 M 2 1 78 30 13.3 5.6 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
77 30 12.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 12.3 5.7 M 2 1 78 30 12.8 6.0 M 2 1 77 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1	LUCUMO LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
75 30 12.2 5.1 M 2 1 75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 1 1	LUCUMO LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
75 30 11.1 5.1 M 2 1 75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 2 1	LUCUMO LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
75 30 12.2 5.1 M 2 1 77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 2 1 75 28 10.7 4.4 M 2 1 </td <td>LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA</td>	LUCUMO CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
77 30 21.1 5.3 M 2 1 78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 1 1 75 28 10.7 4.4 M 2 1	CALTOPA CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
78 30 12.2 5.4 M 2 1 77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	CALTOPA A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
77 30 12.3 5.7 M 2 1 78 30 14.2 5.4 M 2 1 76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 1 1 75 29 10.4 4.4 M 2 1 75 28 10.7 4.4 M 2 1	A.HUNGARA A.HUNGARA A.HUNGARA A.HUNGARA
76 30 12.8 6.0 M 2 1 77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	A.HUNGARA A.HUNGARA A.HUNGARA
77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	A.HUNGARA
77 30 12.4 5.4 M 2 1 77 30 13.9 5.6 M 2 1 78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	A.HUNGARA
78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	A.HUNGARA
78 30 13.3 5.6 M 2 1 75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	
75 29 11.1 4.8 M 2 1 78 30 12.6 5.2 M 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	CONCON
78 30 12.6 5.2 M 1 1 1 75 29 10.4 4.4 M 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	CONCON
75 29 10.4 4.4 M 1 1 1 75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	CONCON
75 30 10.2 4.3 M 2 1 75 28 10.7 4.4 M 2 1	CONCON
75 28 10.7 4.4 M 2 1	CONCON
	CONCON
	SOCSI
77 30 10.9 5.2 M 2 1	SOCSI
77 28 13.3 5.9 M 2 1	PAULLO
75 30 13.2 5.3 M 2 1	PAULLO
75 30 12.6 5.3 M 2 1	PAULLO
75 30 11.6 5.1 M 2 1	PAULLO
77 30 12.4 5.4 M 2 1	PAULLO
76 30 11.8 5.0 M 2 1	PAULLO
77 32 12.1 5.4 M 2 1	LUNAHUANA
77 30 12.5 5.0 M 2 1	LUNAHUANA
78 32 12.8 5.8 M 2 1	LUNAHUANA
76 30 10.9 4.9 M 2 1	LUNAHUANA
75 30 11.8 5.6 M 2 1	LUNAHUANA
76 30 11.1 5.6 M 2 1	LUNAHUANA
78 31 11.9 5.6 M 2 1	JACAYA
	PACARAN
75 30 11.4 5.2 M 2 1	CATAPALLA
75 30 11.0 5.2 M 2 1	
78 30 12.0 5.4 M 2 1	CATAPALLA
75 30 10.7 4.5 M 2 1	ZUÑIGA
77 28 9.3 4.6 M 2 1	ZUÑIGA
106 11	-, l
100 11	
00.04 02 20 15 ((0 M 2)	EODTALEZA
80-84 83 30 15.6 6.9 M 2 1	FORTALEZA
82 32 15.1 6.7 M 2 1	FORTALEZA
82 35 18.1 7.1 M 2 1	PAMPILLA
80 35 18.5 8.3 M 3 1	LUCUMO
82 35 17.4 6.3 M 2 1	LUCUMO
80 30 19.1 6.7 M 2 1	LUCUMO
82 28 14.0 6.2 M 3 1	LUCUMO
80 30 13.2 5.8 M 2 1	LUCUMO
83 34 16.2 6.2 M 2 1	LUCUMO
84 33 18.8 7.2 M 2 1	LUCUMO
80 30 15.0 6.1 M 2 1	LUCUMO
82 30 16.5 6.6 M 2 1	LUCUMO
80 30 16.2 6.1 M 2 1	LUCUMO
80 30 14.7 6.1 M 2 1	LUCUMO

	81	33	13.8	6.0	M	2	1		A HUMGARA
	80	32	13.7	5.6	M	2	1		A HUMGARA
	82	33	16.0	6.4	M	2	1		A HUMGARA
	80	31		6.0	M	2	1		A HUMGARA
			14.6						
	82	34	17.5	6.8	M	2	1		CONCON
	80	32	13.3	6.3	M	2	1		CONCON
	82	32	16.8	5.9	M	2	1		CONCON
	80	32	13.4	5.7	M	2	1		CONCON
	80	32	12.6	5.6	M	2	1		CALTOPA
	83	35	15.1	6.6	M	2	1		CALTOPA
	82	32	16.6	6.3	M	2	1		CALTOPA
	80	30	13.8	5.7	M	2	1		SOCSI
	80	32	13.9	6.1	M	2	1		SOCSI
	82	33		6.2	M	2	1		
			14.5						SOCSI
	80	32	13.3	5.2	M	2	1		PAULLO
	83	33	17.9	6.9	M	2	1		PAULLO
	82	30	16.1	7.1	M	2	1		LUNAHUANA
	80	30	14.4	6.1	M	2	1		LUNAHUANA
	80	31	14.6	6.2	M	2	1		LUNAHUANA
	83	32	14.1	6.7	M	2	1		LUNAHUANA
	80	32	15.0	6.6	M	2	1		LUNAHUANA
	82	32	14.9	6.1	M	2	1		LUNAHUANA
	80					2	1		
		32	13.2	5.6	M				LUNAHUANA
	80	30	12.3	5.9	M	2	1		JACYAA
	81	31	13.5	6.9	M	2	1		CATAPALLA
	80	30	12.4	6.6	M	2	1		CATAPALLA
	82	34	14.4	6.6	M	2	1		CATAPALLA
	80	30	11.1	5.3	M	2	1		HUAGIL
	80	30	13.5	6.8	M	2	1		HUAGIL
	82	32	13.6	6.4	M	2	1		HUAGIL
	83	32	14.4	6.7	M	2	1		S.JUANITO
						=	_		-,,
85-89	88	35	22.6	7.9	M	2	1		FORTALEZA
05-07									
	86	35	19.3	6.8	M	2	1		FORTALEZA
	85	35	18.4	7.1	M	2	1		FORTALEZA
	85	35	16.9	6.6	M	2	1		FORTALEZA
	86	40	20.9	6.9	Н	2		1	LUCUMO
	86	40	23.2	8.0	M	2	1		LUCUMO
	85	30	17.0	6.4	M	2	1		LUCUMO
	85	35	18.1	7.6	M	2	1		LUCUMO
	87	30	16.4	7.3	M	2	1		LUCUMO
	88	35	19.9	8.1	M	2	1		LUCUMO
	86	35	19.4	8.3	M	2	1		A. HUNGARA
	85	35	19.4	7.7	M	2	1		A. HUNGARA
	85	30	19.5	6.2	M	2	1		CALTOPA
	88	30	13.3	5.5	M	2	1		CALTOPA
	85	35	16.0	6.8	M	2	1		CALTOPA
	87	38	17.6	6.9	M	2	1		CALTOPA
	87	35	18.9	7.2	M	2	1		CALTOPA
	89	35	18.8	7.5	M	2	1		CALTOPA
	88	40	23.6	8.8	M	2	1		SOCSI
					M	2	1		PAULLO
	87	35	20.8	7.9					
	88	37	19.8	7.5	M	2	1		PAULLO
		35	17.0	7.4	M	2	1		PAULLO
	85				M	2	1		PAULLO
	88	37	19.9	7.9					
			19.9 17.7	7.9 7.1	M	2	1		LUNAHUANA
	88	37			M M	2 2	1 1		LUNAHUANA LUNAHUANA
	88 85	37 35	17.7	7.1					
	88 85 85	37 35 32	17.7 15.8	7.1 3.7	M	2	1		LUNAHUANA
	88 85 85 86 85	37 35 32 35 35	17.7 15.8 18.6 15.5	7.1 3.7 7.9 6.9	M M M	2 2 2	1 1 1		LUNAHUANA JACAYA CATAPALLA
	88 85 85 86 85 88	37 35 32 35 35 35	17.7 15.8 18.6 15.5 15.8	7.1 3.7 7.9 6.9 7.8	M M M M	2 2 2 2	1 1 1 1		LUNAHUANA JACAYA CATAPALLA CATAPALLA
	88 85 85 86 85 88	37 35 32 35 35 35 35	17.7 15.8 18.6 15.5 15.8 15.1	7.1 3.7 7.9 6.9 7.8 7.2	М М М М	2 2 2 2 2	1 1 1 1		LUNAHUANA JACAYA CATAPALLA CATAPALLA HUAGIL
	88 85 85 86 85 88 85	37 35 32 35 35 35 35 34	17.7 15.8 18.6 15.5 15.8 15.1	7.1 3.7 7.9 6.9 7.8 7.2 7.0	M M M M M	2 2 2 2 2 2	1 1 1 1 1		LUNAHUANA JACAYA CATAPALLA CATAPALLA HUAGIL HUAGIL
	88 85 85 86 85 88	37 35 32 35 35 35 35	17.7 15.8 18.6 15.5 15.8 15.1	7.1 3.7 7.9 6.9 7.8 7.2	М М М М	2 2 2 2 2	1 1 1 1		LUNAHUANA JACAYA CATAPALLA CATAPALLA HUAGIL

90-94	90	36	22.0	8.7	M	2	1	FORTALEZA
	90	37	21.8	7.8	M	2	1	FORTALEZA
	90	37	21.0	8.8	M	2	1	FORTALEZA
	90	36	26.6	8.6	M	2	1	LUCUMO
	92	38	23.9	9.7	M	2	1	LUCUMO
	92	37	22.1	7.7	M	2	1	LUCUMO
	90	35	23.6	9.3	M	2	1	CONCON
	94	40	27.7	9.3	M	2	1	CONCON
	92	35	21.7	9.3	M	2	1	CONCON
	90	35	20.1	8.3	M	2	1	CONCON
	90	36	20.9	8.2	M	2	1	CONCON
	93	40	23.6	8.6	M	2	1	CALTOPA
	93	38	20.0	8.3	M	2	1	CALTOPA
	90	33	18.5	7.9	M	2	1	SOCSI
	92	38	21.2	8.4	M	2	1	SOCSI
	92	37	24.0	9.1	M	2	1	SOCSI
	90	38	21.2	9.0	M	2	1	PAULLO
	92	37	24.8	9.4	M	2	1	PAULLO
	92	38	18.9	8.5	M	2	1	LUNAHUANA
	90	37	19.8	8.5	M	2	1	LUNAHUANA
	92	37	21.3	8.7		2	1	LUNAHUANA
	92			9.4	M		1	LUNAHUANA
		38	24.5		M	2	1	
	90	35	18.1	7.6	M	2		LUNAHUANA
	92	40	23.9	8.8	M	2	1	LUNAHUANA
	90	35	17.4	7.1	M	2	1	JACAYA
	90	36	19.2	8.5	M	2	1	JACAYA
	90	37	19.7	8.3	M	2	1	PACARAN
	92	40	21.8	8.2	M	2	1	CATAPALLA
	90	35	18.8	8.3	M	2	1	HUAGIL
	90	35	20.3	8.8	M	2	1	HUAGIL
	92	40	22.4	10.8	M	2	1	HUAGIL
	93	40	17.7	8.3	M	2	1	MACHURANGA
	90	35	10.2	8.8	M	2	1	ZUÑIGA
95-99	98	40	28.6	10.7	М	2	1	FORTALEZA
95-99				10.7	M			
	98	40	26.5	10.0	M	3	1	FORTALEZA
	95	38	28.9	10.2	M	2	1	A. HUNGARA
	95	40	25.5	10.1	M	2	1	A. HUNGARA
	95	38	25.0	10.3	M	2	1	A. HUNGARA
	95	38	24.2	9.8	M	2	1	CALTOPA
	95	40	24.6	9.7	M	2	1	CALTOPA
	98	40	25.7	10.5	M	2	1	SOCSI
	98	40	24.9	10.1	M	2	1	SOCSI
	95	38	27.6	10.5	M	2	1	LUNAHUANA
	96	40	22.6	9.6	M	2	1	JACAYA
	97	40	26.4	10.8	M	2	1	JACAYA
	97	42	26.9	10.3	M	2	1	JACAYA
	96	40	23.6	10.4	M	2	1	PACARAN
	98	42	26.3	10.2	M	2	1	CATAPALLA
	99	40	27.1	11.7	M	2	1	CATAPALLA
	98	40	27.9	11.1	M	2	1	CATAPALLA
	97	38	25.1	10.7	M	2	1	HUAGIL
	97	40	24.1	10.6	M	2	1	MACHURANGA
	98	40	28.3	11.7	M	2	1	ZUÑIGA
	98	35	23.3	1.3	Н	2		1 CHAVIN
							53	1
								<u>-</u>
100-104	103	43	32.2	11.2	M	2	1	A. HUNAGARA
	102	42	30.3	11.2	M	3	1	A. HUNAGARA
1	103	43	31.1	12.5	M	2	1	A. HUNAGARA
	102	43	30.9	11.4	M	2	1	CALTOPA
	102	43	31.3	11.0	M	2	1	CALTOPA
	100	43	31.0	11.1	M	2	1	PAULLO
	100	41	29.7	11.6	M	2	1	PAULLO

103		103								
100		103	43	34.3	12.1	M	2	1		LUNAHUA
100		100	45	30.7	10.2	M	2	1		LUNAHUA
100		100	40	27.3	10.8	M	2	1		LUNAHUA
100		100	42	30.0	11.1	M	2	1		LUNAHUA
100		100	42		10.4	M	2	1		PACARA
104							2	1		CATAPAL
100			45	41.6		M	2	1		HUAGII
105-109							2	1		ZUÑIGA
105-109							2	-	1	HUALLAN
105							2		1	CHAVI
105	9	109	45	45.0	14.2	M	2	1		LUCUMO
107							2	1		SOCSI
105							2	1		SOCSI
105							2	1		PAULLO
107							2	1		JACAYA
105							2	1		
108										PACARA
108							2	1		PACARA
105							2	1		PACARA
105							2	1		CATAPAL
105							2	1		HUAGII
107							2	1		HUAGII
105							2	1		TACUASIMO
110-114		107	42	29.8	14.3	Н	2		1	HUALLAN
110-114		105	40	31.6	13.6	Н	2		1	CHAVIN
113		107	49	29.9	10.3	M	2	1		ESCARILL
113								28	4	
112	4	110	45	44.0	15.2	M	2	1		FORTALE
110		113	48	49.1	14.2	M	3	1		FORTALE
110		112	48	48.4	16.1	M	2	1		A HUNGA
110							3	1		CONCO
110							2	1		CONCO
112 50 46.9 14.0 M 110 48 42.8 14.4 M 1112 50 41.5 13.0 M 110 43 38.2 13.7 M 1112 47 38.2 15.3 M 1112 48 44.5 15.1 M 112 50 43.6 14.1 M 110 47 39.0 15.0 M 110 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 35.1 14.5 M 110 45 32.2 13.9 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 35.6 15.1 H 111 45 50 46.9 17.8 M 115 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 41.5 16.2 M							2	1		CALTOP
110							2	1		CALTOP
112 50 41.5 13.0 M 110 43 38.2 13.7 M 112 47 38.2 15.3 M 112 48 44.5 15.1 M 112 50 43.6 14.1 M 110 47 39.0 15.0 M 1112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 35.1 14.5 M 110 45 32.2 13.9 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 33.6 15.1 H 110 45 35.6 15.1 H 1110 45 35.6 15.1 H 1110 45 35.6 15.1 H 1110 45 36.9 17.8 M 110 45 37.8 13.8 M 110 45 38.6 15.1 H 110 45 31.8 13.8 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 31.8 M 1							2	1		CALTOP
110							2	1		CALTOP
112 47 38.2 15.3 M 112 48 44.5 15.1 M 112 50 43.6 14.1 M 110 47 39.0 15.0 M 112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 32.2 13.9 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 35.6 15.1 H 110 45 35.6 15.1 H 1110 45 31.8 13.8 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 31.8							2	1		SOCSI
112 48 44.5 15.1 M 112 50 43.6 14.1 M 110 47 39.0 15.0 M 1112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 35.1 14.5 M 110 45 32.2 13.9 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 33.8 13.8 M 110 45 35.6 15.1 H 110 45 31.8 13.8 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 31.8										SOCSI
112 50 43.6 14.1 M 110 47 39.0 15.0 M 112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 35.6 15.1 H 110 45 31.8 13.8 M 110 45 35.6 15.1 H 110 45 31.8 13.8 M 110 45 31.8 1							2	1		
110 47 39.0 15.0 M 112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 45 32.2 13.9 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 31.8 13.8 M 110 45 35.6 15.1 H 115 15 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2	1		SOCSI
112 47 38.5 14.8 M 110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 35.6 15.1 H 115 15 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2	1		PAULLO
110 47 38.6 14.7 M 110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 110 45 35.6 15.1 H 115 15 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M		110	47	39.0	15.0	M	2	1		LUNAHUA
110 48 38.0 13.6 M 110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M						M	2	1		LUNAHUA
110 45 34.5 13.5 M 110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 1110 45 31.8 13.8 M 1117 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M			47	38.6	14.7	M	2	1		LUNAHUA
110 45 35.1 14.5 M 110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M		110	48	38.0	13.6	M	2	1		JACAYA
110 45 42.9 15.6 M 110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M		110	45	34.5	13.5	M	2	1		PACARA
110 47 40.2 15.8 M 110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 43.7 18.2 M		110	45	35.1	14.5	M	2	1		PACARA
110 45 32.2 13.9 M 110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 43.7 18.2 M		110	45	42.9	15.6	M	2	1		CATAPAL
110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M		110	47	40.2	15.8	M	2	1		MACHURA
110 45 32.3 14.3 H 110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M		110	45	32.2	13.9	M	2	1		TACUASIMO
110 45 31.8 13.8 M 100 43 35.6 15.1 H 115-119 115 45 35.4 12.9 M 115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2		1	CHAVIN
115-119							2	1		CHAVIN
115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2		1	CHAVIN
115 50 46.9 17.8 M 115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M	9	115	45	35.4	12.9	M	2	1		CONCO
115 50 48.3 14.7 M 115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2	1		CALTOP
115 50 46.1 17.3 M 117 50 41.5 16.2 M 117 50 43.7 18.2 M							2	1		PAULLO
117 50 41.5 16.2 M 117 50 43.7 18.2 M							2	1		PAULLO
117 50 43.7 18.2 M							2	1		PAULLO
							2	1		HUAGI
113 43 44.2 10.0 M							2	1		MACHURA
118 45 42.1 19.0 H							2	1	1	CHAVIN
								30	3	_

1	120-124	123	50	55.4	20.6	M	2	1		PAULLO
		123	50	48.6	19.2	M	2	1		PAULLO
		123	55	58.1	21.1	M	2	1		MACHURANGA
		122	43	41.2	18.4	Н	2		1	LA TOLVA
							_		-	
	125-129	125	55	61.7	22.1	M	2	1		CALTOPA
		125	45	53.5	18.8	M	2	1		JACAYA
		125	53	55.4	21.5	M	2	1		LA TOLVA
		125	42	47.9	20.3	Н	2		1	HUALLAMPI
										,
								6	2	
	130-134	131	57	73.0	24.8	M	2	1		LA TOLVA
	100 104	134	52	64.6	29.5	Н	2	•	1	HUALLAMPI
I		104	32	04.0	27.0	11	-		1	TIONEENWITT
ı	135-139									
								1	1	
								-	•	'
	140-144									
	145-149									
								0	0	<u>. </u>
	150-154									
	155-159									
										,
								0	0	l [
	100101									
	160-164									
	165-169									
	103-109									
								0	0	r l
									-	·

Tabla 47. Número de Individuos Capturados por Pescador en cada Estación de muestreo

ESTRATO	ESTACION	N	NUME	RO DE	CAMA	RONE	S EXTI	RAIDO	S		
msnm				P	OR PES	CADO	OR			SUB TOTAL	TOTAL
		P1	P2	P3	P4	P5	P6	P 7	P8		*
0-100	PAMPILLA	189	209	326	237	139	283	298	156	1,837	
0-100	LUCUMO	95	149	238	83	77	54	84	108	888	3,285
0-100	FORTALEZA	95	54	50	63	65	53	47	133	560	
100 - 300	A.HUNGARA	127	64	67	63	48	63	46	24	502	
100 - 300	CONCON	32	50	28	33	30	47	46	33	299	1,149
100 - 300	CALTOPA	36	28	51	52	25	45	41	70	348	
300 - 500	SOCSI	35	16	14	20	23	10	51	41	210	
300 - 500	PAULLO	27	45	17	18	65	54	34	76	336	742
300 - 500	LUNAHUANA	74	10	13	4	9	33	24	29	196	
500 - 700	CATAPALLA	6	12	4	5	3	5	6	6	47	
500 - 700	JACAYITA	42	6	2	1	4	6	3	6	70	138
500 - 700	PACARAN	1	0	0	2	6	2	1	9	21	
700 - 900	HUAGIL	3	1	4	2	3	1	9	5	28	
700 - 900	ZUÑIGA	10	0	3	0	2	2	5	4	26	67
700 - 900	MACHURAMGA	0	2	0	4	4	0	1	2	13	
900 - 1100	SAN JUANITO	0	1	0	0	0	0	0	0	1	
900 - 1100	PIEDRA COCCA	0	0	0	0	0	0	0	0	0	5
900 - 1100	LA TOLVA	1	0	1	0	1	0	1	0	4	
1100 - 1300	HUALLAMPI	1	0	1	1	1	0	0	0	4	
1100 - 1300	TACUASIMONTE	0	0	0	0	1	0	1	0	2	6
1100 - 1300	CANCHAN	0	0	0	0	0	0	0	0	0	
1300 - 1500	ESCARILLA	1	0	0	0	0	0	0	0	1	
1300 - 1500	CHAVIN	1	1	1	1	2	1	1	4	12	13
1300 - 1500	CHICCHICAY	0	0	0	0	0	0	0	0	0	
1500 - 1700	CAPILLUCAS	0	0	0	0	0	0	0	0	0	
1500 - 1700	PUTINZA	0	0	0	0	0	0	0	0	0	0
1500 - 1700	CALACHOTA	0	0	0	0	0	0	0	0	0	

Tabla 48. Biomasa Capturada por Pescador en cada Estación de Muestreo

ESTRATO	ESTACION	BIOMASA DE CAMARON EXTRAIDO									тотал
msnm				PC	OR PESC	ADOR(0	GR)			TOTAL	TOTAL
		P1	P2	P3	P4	P5	P6	P7	P8		
0-100	PAMPILLA	779.75	927.37	1605.08	1085.54	615.72	1194.30	1465.43	741.00	8,414.21	
0-100	LUCUMO	490.32	664.93	1295.55	504.92	468.42	274.24	449.08	650.12	4,797.56	15,957.69
0-100	FORTALEZA	524.10	307.00	300.00	437.80	291.48	333.59	290.17	261.78	2,745.92	
100 - 300	A.HUNGARA	367.69	238.45	345.81	241.67	205.09	288.58	483.00	227.48	2,397.77	
100 - 300	CONCON	197.71	343.48	334.92	1105.50	254.00	473.28	274.98	141.58	3,125.45	8,489.18
100 - 300	CALTOPA	433.03	201.00	437.58	464.82	210.42	265.81	418.86	534.44	2,965.96	
300 - 500	SOCSI	189.41	89.60	110.00	158.95	168.67	88.00	234.81	349.05	1,388.49	
300 - 500	PAULLO	267.75	290.00	136.00	356.00	681.45	707.00	495.58	370.76	3,304.53	6,189.30
300 - 500	LUNAHUANA	148.00	248.89	253.00	50.67	93.38	276.77	157.57	268.00	1,496.27	
500 - 700	CATAPALLA	64.00	247.20	52.00	111.00	36.00	102.50	114.00	63.60	790.30	
500 - 700	JACAYITA	231.00	69.00	16.00	17.00	93.00	122.00	47.00	13.00	608.00	1,735.30
500 - 700	PACARAN	37.00	0.00	0.00	76.00	44.00	89.00	0.00	91.00	337.00	
700 - 900	HUAGIL	51.00	48.00	94.67	16.00	31.00	31.00	179.00	86.00	536.67	
700 - 900	ZUÑIGA	52.00	0.00	37.50	0.00	38.00	6.00	60.00	22.00	215.50	986.17
700 - 900	MACHURAMGA	0.00	26.00	0.00	66.00	72.00	0.00	4.00	66.00	234.00	
900 - 1100	SAN JUANITO	0.00	14.00	0.00	0.00	0.00	0.00	0.00	0.00	14.00	
900 - 1100	PIEDRA COCCA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	217.00
900 - 1100	LA TOLVA	46.00	0.00	60.00	0.00	18.00	0.00	79.00	0.00	203.00	
1100 - 1300	HUALLAMPI	53.00	0.00	40.00	33.00	73.00	0.00	0.00	0.00	199.00	
1100 - 1300	TACUASIMONTE	0.00	0.00	0.00	0.00	30.00	0.00	36.00	0.00	66.00	265.00
1100 - 1300	CANCHAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1300 - 1500	ESCARILLA	36.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	36.00	
1300 - 1500	CHAVIN	0.00	0.00	32.00	0.00	86.00	38.00	34.00	117.33	307.33	343.33
1300 - 1500	CHICCHICAY	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1500 - 1700	CAPILLUCAS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1500 - 1700	PUTINZA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1500 - 1700	CALACHOTA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

ANEXO 3 Análisis de Fitoplancton

PRODUCTO : Agua

CANTIDAD DE MUESTRA : 18 frascos de 500 ml

PRESENTACION : Frasco de plastico con tapa rosca

CONDICION : Bueno, cerrado FECHA DE MUESTREO : 11-18/07/2019 FECHA DE INICIO DE ENSAYO : 08/08/2019 FECHA DE TERMINO DE ENSAYO : 09-10/08/2019

								N	I° cél∕litro									
DIVISION / ESPECIE	Huagil	Fortaleza	Alto Hunga	ra Canchan	Lunahuana	Machurang	a Capillucas	San Juanito	Calachota	Pacaran	Huayllamı	oi Socsi	Calto pa	Pampilla	Catapalla	Escarilla	La Tolva	Chicchicay
BACILLAROPHYTA																		
Hannaea arcus			15	10			18		12		10	13					9	
Cymbella lanceolata			12	18	21		12	16	23		21	20	24	16		15		
Cymbella affinis	22	15	16	23	18	26	11	20	20	17	19	15	12	27	18	31	19	35
Cymbella sp.	25	23	14	17	24	15	25	17	21	16	24	14	19	17	25	23	33	22
Diatoma vulgare	15	12	10	16	11	18	10	21		20	27	20	9	11	30	26	19	16
Fragillaria capucina	22	20	32	10	15			19		23	30	11	18		19	19	27	18
Frustulia rhomboides		10	14			8								4				
Melosira varians	35		28	15			24	28	25				20		28		31	21
Navicula sp.	15	30	12			12		14	10	16	16	12	13	18		27	15	19
Navicula minuscula	12	8													10			
Nitzschia sigmoidea			14	20				8				11					20	
Synedra goulardii		10									15	10			14			14
CYANOBACTERIA																		
Anabaena sp. (filamento)		8		4		6		5	2					5				5
Chroococcus sp.					4	6									8			
Merismopedia elegans (colonia)			6				8									6		
Oscillatoria tenuis (filamento)				4	8				4		8	4			4		4	4
CHLOROPHYTA																		
Cladophora glomerata (fil-ramificado)	8		5									4						
Closterium leibleinii	9	13	13		22			18		12				10		10	12	
Cosmarium botrytis			8	17				20	10			8		14		11		10
Cosmarium sp.							9	10					7				11	
Scenedesmus sp. (cenobio)	16	11				15		12			10	10			11	14		17
Spirogyra sp. (filamento)			11	12		10								8	7		10	
Ulothrix sp. (filamento)					10								6					
Pediastrum boryanum (cenobio)	10	5		4	2			7	6	8			8		4			

Referencia

APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater. 22^{th} Edition, Plankton. Washington.

Análisis realizado por: Ing. Manuel Figueroa Vargas Machuca C.I.P. 35857

agina 12.

Análisis de Fitoplancton Bentónico

PRODUCTO : Agua

CANTIDAD DE MUESTRA : 18 frascos de 120 ml

PRESENTACION : Frasco de plastico con tapa rosca

CONDICION : Bueno, cerrado FECHA DE MUESTREO : 11-18/07/2019 FECHA DE INICIO DE ENSAYO : 05/08/2019 FECHA DE TERMINO DE ENSAYC : 06-07/08/2019

									N	J° cél/mm²									
DIVISION / ESPECIE	Huagil	Fo	rtaleza	a Alto Hunga	ra Canchar	n Lunahuana	Machurang	ga Capillucas	San Juanito	Calachota	Pac arar	Huayllamp	oi Socsi	Caltopa	n Pampilla	a Catapalla	Escarilla	La Tolva	Chicchicay
BACILLAROPHYTA																			
Cocconeis pla centula	2					2			2	3		2		2		3		2	
Cymbella lanceolata					4	3		4	5	4			3	4	2		2		
Cymbella affinis	8		5	7	4	5	6	6	3	7	7	6	5	4	5	7	4	7	5
Cymbella sp.	4		3	7	6	6	5	3	5	4	4	3	4	5	3	2	4	5	5
Diatoma vulgare	3		4	3	5	4	8	4	4	3	6	4	4	3	5	3	2	6	4
Diploneis ovalis			1						2	2	3	2					2	3	
Fragillaria capucina	12		12	10	11	12	12	14	13	14	13	12	11	14	12	10	12	13	14
Gomphonema acuminatum	2			2		4				2		4	1	3			2	1	
Melosira varians	2			4	5				4	3								3	2
Navicula cuspidata											2		2						
Navicula sp.	4		3	2	4	5	5	4	2	4	2	3	2	4	3	3	5	2	4
Navicula minuscula	2		2		4	1	2		3	2	2		4	2	1	3	4	2	
Navicula dicephala				2		1	4	2		1		2	2		2	3		4	
Pleurosira la evis											1	3							
Synedra ulna			2	2	1				2										
CYANOBACTERIA																			
Anabaena sp. (filamento)									1	2									1
Calothrix sp. (filamento)					2		2		2				4						
Chroococcus sp.			4			2						4							
Merismopedia elegans (colonia)								1	1								1		
Oscillatoria tenuis (filamento)	2				1					2		1	2		2	1			1
CHLOROPHYTA																			
Closterium leibleinii				2		1			1						1				
Cosmarium botrytis				2	2			1		1					2				
Cosmarium sp.								3					1					2	
Scenedesmus sp. (cenobio)	4	•	2				2		4							2	1		2
Spirogyra sp. (filamento)				2	1		2					1	1			1			
Ulothrix sp. (filamento)						2	1					2		1					
Pediastrum boryanum (cenobio)	· 1	•	1			2		1	1	2	2	1		1	2	1	2	1	1

Referencia:

APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater. 22th Edition:

Periphyton. Washington.

Análisis realizado por: Ing. MANUEL FIGUEROA VARGAS MACHUCA C.I.P. 35857

Análisis de Zooplancton

Empresa: Compañía Eléctrica El Platanal S.A.

Proyecto: XXXVII Monitoreo biológico de camarón de río

Procedencia: Río Cañete Asunto: análisis de zooplancton Tipo de muestra: agua superficial Fecha de muestreo: 11-18 de julio del 2019

IDENTIFI	CACIÓN		ENSAYO											
			Análisis cualitativo y cuantitativo de zooplancton											
Código de muestra	Tipo de producto	Phylum	Clase	Orden	Fa milia	Taxón	Org/m³	Observaciones						
Pampilla	Agua	AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1600							
rampina	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	1500	Adultos y juveniles.						
Fortaleza	Agua	ROTIFERA	BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	480	Adultos y juveniles.						
ronaleza	superficial	KOTIFEKA	EUROTATORIA	PLOIMA	GASTROPODIDAE	Ascomorpha sp.	500	Adultos y juveniles.						
	Δ	AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	600							
Caltopa	Agua	DOTTED 4	BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	500	Adultos y juveniles.						
	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	1200	Adultos y juveniles.						
			BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	500	Adultos y juveniles.						
Alto Hungará	Agua	ROTIFERA	EL DOT L TODAL	DI OD ()	GASTROPODIDAE	Ascomorpha sp.	450	Adultos y juveniles.						
_	superficial		EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	1500	Adultos y juveniles.						
		AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1000							
Socsi	Agua	DOTTED 4	BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	1500	Adultos y juveniles.						
	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Ascomorpha sp.	500	Adultos y juveniles.						
		AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	2500	•						
Lunahuaná	Agua	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	3800	Adultos y juveniles.						
	superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	500	Adultos y juveniles.						
	Agua		BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Centropyxis sp.	1000	,						
Catapalla	superficial	ROTIFERA	EUROTATORIA	PLOIMA	GASTROPODIDAE	Euchlanis dilatata	500	Adultos y juveniles.						
	Agua	AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1000	,,						
Pacarán	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	3000	Adultos y juveniles.						
	•	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	3500	Adultos y juveniles.						
Huagil	Agua		MAXILLOPODA	CYCLOPOIDA	CYCLOPIDAE	Meta cyclops sp.	500	Adultos, copepoditos y nauplios						
	superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	1000	Adultos y juveniles.						
	Agua	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	500	Adultos y juveniles.						
Machuranga	superficial	ARTHROPODA	MAXILLOPODA	CYCLOPOIDA	CYCLOPIDAE	Meta cyclops sp.	450	Adultos, copepoditos y nauplios						
	superneun		BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	550	Adultos y juveniles.						
La Tolva	Agua	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	3500	Adultos y juveniles.						
Lu Torvu	superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	500	Adultos y juveniles.						
		AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE		1000	Additos y Juverines.						
Huayllampi	Agua	AWOEDOZOA	BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Centropyxis sp. Rotaria sp.	1200	Adultos y juveniles.						
i iday nampi	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	900	Adultos y juveniles. Adultos y juveniles.						
			BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	500	Adultos y juveniles.						
Canchán	Agua	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	,	1600	Adultos y juveniles. Adultos y juveniles.						
Carcian	superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Euchlanis dilatata	1000	Adultos y juveniles.						
	Agua	AKITIKOTODA	BDELLOIDEA	SIN ORDEN	PHILODINIDAE	Cyprinotus sp.	1400	Adultos y juveniles. Adultos y juveniles.						
Escarilla		ROTIFERA	EUROTATORIA	PLOIMA	GASTROPODIDAE	Rotaria sp.	1000	• *						
	superficial Agua	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Ascomorpha sp. Euchlanis dilatata	4000	Adultos y juveniles.						
Chicchicay								Adultos y juveniles.						
	superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA CVCL OPOIDA	CYPRIDIDAE	Cyprinotus sp.	3500	Adultos y juveniles.						
Capillucas	Agua	ARTHROPODA	MAXILLOPODA	CYCLOPOIDA	CANTHOCAMPTIDAL	Eucyclops ensifer	600	Adultos y juveniles.						
	superficial		BDELLOIDE 4		CANTHOCAMPTIDA		500	Adultos y juveniles.						
C . I	Agua	DOTTED A	BDELLOIDEA	SIN ORDEN	PHILODINAVIDAE	Philodinavus paradoxus	400	Adultos y juveniles.						
San Juanito	superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	3500	Adultos y juveniles.						
	A				ASPLANCHNIDAE	Asplanchna sp.	1000	Adultos y juveniles.						
Calachota	Agua	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	500	Adultos y juveniles.						
	superficial				LIMNOCYTHERIDAE	Limnocythere sp.	480	Adultos y juveniles.						

Referencia:

APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater. Biological Examination, Part 10200: Plankton. 22th Edition. Washington. Elaborado:

Ing. VALENTIN MOGOLLON AVILA CIP 48430

Análisis de Macroinvertebrados

Procedencia: Río Cañete

Asunto: análisis de macroinvertebrados bentónicos

Tipo de muestra: sedimento Fecha de muestreo: 11-18 de julio del 2019

IDENTIFIC	ACIÓN	ENSAYO Análisis cualitativo y cuantitativo de macroinvertebrados bentónicos												
Código de	Tipo de			málisis cualitativo y cuar	ntitativo de macroinver	tebrados bentónicos								
muestra	producto	Phylum	Clase	Orden	Familia	Taxón	Org/m²	Observaciones						
		MOLLUSCA	GASTROPODA	3ASOMMATOPHORA	PHYSIDAE	Physa venustula	30	Adultos y juveniles						
			MALACOSTRACA	DECAPODA	PALAEMONIDAE	Cryphiops caementarius	10	Adultos y juveniles						
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	120	Ninfas.						
Pampilla	Sedimento				CAENIDAE	Caenis sp.	50	Ninfas.						
- unipinu	o cumento	ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPTILIDAE	Hydroptila sp.	60	Ninfas.						
			11020111	THEOTOT TENT	TITOROT TEEDTIE	Ochrotrichia sp.	380	Ninfas.						
				DIPTERA	CHIRONOMIDAE	Alota ny pus sp.	400	Larvas.						
						Cricotopus sp.	300	Larvas.						
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	320	Ninfas.						
				DI TIDITOTI TETA	CAENIDAE	Caenis sp.	400	Ninfas.						
				TRICHOPTERA	HYDROPSYCHIDAE	Hydropsyche sp.	30	Ninfas.						
				TRICTIOI TERA	HYDROPTILIDAE	Ochrotrichia sp.	200	Ninfas.						
Fortaleza	Sedimento	ARTHROPODA	INSECTA	COLEOPTERA	ELMIDAE	Microcylloepus sp.	150	Adultos y larvas.						
					EMPIDIDAE	Trichoclinocera sp.	20	Larvas.						
				DIPTERA		Alota ny pus sp.	200	Larvas.						
				DIFTERA	CHIRONOMIDAE	Cricotopus sp.	500	Larvas.						
						Onconeura sp.	250	Larvas.						
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	110	Adultos y juveniles						
					BAETIDAE	Andesiops sp.	40	Ninfas.						
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	230	Ninfas.						
					LEPTOPHLEBIIDAE	Thraulodes sp.	10	Ninfas.						
				TOTAL CONTROL	HYDROPSYCHIDAE	·	12	Ninfas.						
Caltopa	Sedimento		n ionom.	TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	20	Ninfas.						
-		ARTHROPODA	INSECTA	COLEOPTERA	ELMIDAE	Microcylloepus sp.	10	Adultos y larvas.						
						Alota nypus sp.	30	Larvas.						
					CHIRONOMIDAE	Cricotopus sp.	180	Larvas.						
				DIPTERA		Polypedilum sp.	40	Larvas.						
					MUSCIDAE	Limnophora sp.	10	Larvas.						
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	120	Adultos y juveniles						
				EDITE (ED ODED)	BAETIDAE	Andesiops sp.	130	Ninfas.						
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	500	Ninfas.						
lto Huangará	Sedimento	ARTHROPODA	INSECTA		HYDROPSYCHIDAE	Hydropsyche sp.	20	Ninfas.						
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	150	Ninfas.						
				DIPTERA	CHIRONOMIDAE	Cricotopus sp.	200	Larvas.						
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	220	Adultos y juveniles						
					BAETIDAE	Andesiops sp.	120	Ninfas.						
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	180	Ninfas.						
					LEPTOPHLEBIIDAE	,	70	Ninfas.						
Socsi	Sedimento				SIMULIIDAE	Simulium sp.	20	Larvas.						
			INSECTA			Alota nypus sp.	100	Larvas.						
				DIPTERA		Cricotopus sp.	150	Larvas.						
					CHIRONOMIDAE	Onconeura sp.	30	Larvas.						
						Pentaneura sp.	40	Larvas.						
						Andesiops sp.	120	Adultos y juveniles						
				EPHEMEROPTERA	BAETIDAE	Baetodes sp.	30	Ninfas.						
					CAENIDAE	Caenis sp.	50	Ninfas.						
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	30	Ninfas.						
Lunahuaná S	Sedimento	ARTHROPOD A	INSECTA	COLEOPTERA		Microcylloepus sp.	20	Larvas.						
		ento ARTHROPODA												
Lunahuaná						Alota nuvus sn	80	Larvas.						
Lunahuaná						Alota ny pus sp. Cricotonus sp.								
Lunahuaná				DIPTERA	CHIRONOMIDAE	Alotanypus sp. Cricotopus sp. Polypedilum sp.	60 20	Larvas. Larvas.						

		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	140	Adultos y juveniles.
		MOLLUSCA	CASTRODODA	3ASOMMATOPHORA	ENCHYTRAEIDAE PHYSIDAE	Physa venustula	20 50	Adultos y juveniles. Adultos y juveniles.
		MOLLUSCA	GASTROPODA	3ASOMMA TOPHOKA	BAETIDAE	Andesiops sp.	400	Ninfas.
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	420	Ninfas
					HYDROPSYCHIDAE	,	10	Ninfas.
				TRICHOPTERA	HYDROPTILIDAE		90	Ninfas.
Catapalla	Sedimento			COLEOPTERA	ELMIDAE	Microcylloepus sp.	20	Adultos y larvas.
1		A RTHROPOD A	INSECTA	HEMIPTERA	VELIIDAE	Ragovelia sp.	10	Adultos y juveniles.
		AKTHKOPODA	INSECTA		SIMULIIDAE	Simulium sp.	20	Larvas.
						Alota ny pus sp.	220	Larvas.
				DIPTERA		Onconeura sp.	30	Larvas.
				DILTERA	CHIRONOMIDAE	Pentaneura sp.	170	Larvas.
						Polypedilum sp.	30	Larvas.
						Tanytarsus sp.	80	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	210	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	120	Ninfas.
				TRICHOPTERA	CAENIDAE HYDROPTILIDAE	Caenis sp.	320 170	Ninfas.
				COLEOPTERA	ELMIDAE	Ochrotrichia sp. Microcylloepus sp.	50	Ninfas. Adultos y larvas.
Pacarán	Sedimento	ARTHROPODA	INSECTA	COLEOFTERA	ELMIDAE	Alotanypus sp.	80	Larvas.
		AKITIKOTODA	INSECTA			Cricotopus sp.	200	Larvas.
				DIPTERA	CHIRONOMIDAE	Onconeura sp.	50	Larvas.
						Polypedilum sp.	30	Larvas.
						Tanytarsus sp.	300	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	700	Adultos y juveniles.
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	320	Ninfas.
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	1500	Ninfas.
Huagil	Sedimento	ARTHROPODA	INSECTA	COLEOPTERA	ELMIDAE	Microcylloepus sp.	40	Adultos y larvas.
				DIPTERA	CITTO LOS COS LOS	Cricotopus sp.	500	Larvas.
				DIPTERA	CHIRONOMIDAE	Pentaneura sp. Tanytarsus sp.	100 1200	Larvas. Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Na is sp.	80	Adultos y juveniles.
		MOLLUSCA		3ASOMMATOPHORA	PHYSIDAE	Physa venustula	120	Adultos y juveniles.
		MOLLOSCA	GASTROTODA		BAETIDAE	Andesiops sp.	100	Ninfas.
Machuranga	Sedimento			EPHEMEROPTERA	CAENIDAE	Caenis sp.	600	Ninfas.
Ü		ARTHROPODA	INSECTA			Alotanypus sp.	60	Larvas.
				DIPTERA	CHIRONOMIDAE	Cricotopus sp.	80	Larvas.
						Tanytarsus sp.	170	Larvas.
		CNIDARIA	HYDROZOA	ANTHOATHECATAE	HYDRIIDAE	Hydra sp.	350	Adultos y juveniles.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Na is sp.	1200	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	500	Ninfas.
					CAENIDAE	Caenis sp.	2000	Ninfas.
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	1500	Ninfas.
San Juanito	Sedimento			COLEOPTERA	ELMIDAE	Microcylloepus sp.	350	Larvas.
			INSECTA		SIMULIIDAE	Simulium sp.	400	Larvas.
				DIPTERA		Onconeura sp.	70	Larvas. Larvas.
				DILTERA	CHIRONOMIDAE	Pentaneura sp. Polypedilum sp.	130 100	Larvas.
						Tanytarsus sp.	800	Larvas.
		'LATYHELMINTHES	TURBELLARIA	TRICLADIDA	PLANARIIDAE	Dugesia sp.	20	Adultos y juveniles.
				LUMBRICULIDA	LUMBRICULIDAE	Eclipidrilus sp.	30	Adultos y juveniles.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	300	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	3ASOMMATOPHORA	PHYSIDAE	Physa venustula	80	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	20	Adultos y juveniles.
			OSTRACODA	1 ODOCOFIDA	CITKIDIDAE	Chlamydotheca sp.	24	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE	Baetodes sp.	50	Ninfas.
La Tolva	Sedimento			LI TIEWEROI TERA	CAENIDAE	Caenis sp.	900	Ninfas.
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	230	Ninfas.
		ARTHROPODA		COLEOPTERA	ELMIDAE	Heterelmis sp.	10	Larvas.
			INSECTA		-	Microcylloepus sp.	100	Adultos y larvas.
						Alotanypus sp.	200	Larvas.
				DIPTERA	CHIRONOMIDAE	Cricotopus sp.	280	Larvas.
						Pentaneura sp.	60 250	Larvas. Larvas.
						Tanytarsus sp.	250	LatV dS.

		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	10	Adultos y juveniles.
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	80	Ninfas.
					HYDROPSYCHIDAE		20	Ninfas.
Huay llampi	Sedimento	ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	10	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	20	Adultos y larvas.
				DIPTERA	CERATOPOGONIDAE	Palpomyia sp.	10	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	3ASOMMATOPHORA	PHYSIDAE	Physa venustula	70	Adultos y juveniles.
					BAETIDAE	Andesiops sp.	160	Ninfas.
				EPHEMEROPTERA	BAETIDAE	Camelobaetidius sp.	50	Ninfas.
					CAENIDAE	Caenis sp.	900	Ninfas.
Canchán	Sedimento	, per monon .	n concert	TRICITO PETER	HYDROPSYCHIDAE	Hydropsyche sp.	40	Ninfas.
		ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	90	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	150	Larvas.
				D DTED 4	GI THOUGH TO LE	Cricotopus sp.	420	Larvas.
				DIPTERA	CHIRONOMIDAE	Tanytarsus sp.	100	Larvas.
		NEMATODA	ADENOPHOREA	DORYLAIMIDA	DORYLAIMIDAE	Dorylaimus sp.	20	Adultos y juveniles.
				LUMBRICULIDA	LUMBRICULIDAE	Eclipidrilus sp.	25	Adultos y juveniles.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	800	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	3ASOMMATOPHORA	PHYSIDAE	Physa venustula	70	Adultos y juveniles.
				EDITE (EDODEED)	BAETIDAE	Andesiops sp.	200	Ninfas.
Escarilla	Sedimento			EPHEMEROPTERA	CAENIDAE	Caenis sp.	280	Ninfas.
		A DELIBODOD A	DICECT A	TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	600	Ninfas.
		ARTHROPODA	INSECTA		SIMULIIDAE	Simulium sp.	80	Larvas.
				DIPTERA	CHIRONOMIDAE	Alotanypus sp.	100	Larvas.
					CHIRONOMIDAE	Tanytarsus sp.	900	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Na is sp.	4000	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	3000	Ninfas.
				EFFIENIEROFIERA	CAENIDAE	Baetodes sp.	50	Ninfas.
				TRICHOPTERA	HYDROBIOSIDAE	Atopsyche sp.	10	Ninfas.
Chicchicay	Sedimento			TRICTIOT TERM	HYDROPTILIDAE	Ochrotrichia sp.	150	Ninfas.
Chicchicay	Sedimento	ARTHROPODA	INSECTA	COLEOPTERA	ELMIDAE	Microcylloepus sp.	200	Adultos y larvas.
					BLEPHARICERIDAE	Bibiocephala sp.	10	Larvas.
				DIPTERA	SIMULIIDAE	Simulium sp.	20	Larvas.
				DILTERA	CHIRONOMIDAE	Alotanypus sp.	700	Larvas.
					CIMONOMBIA	Tanytarsus sp.	110	Larvas.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	1600	Ninfas.
Capillucas	Sedimento	ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPTILIDAE	Hydroptila sp.	700	Ninfas.
сиринасио	Scameno	.marmor obii	11020111	THETTOT TENT	TITOROT TILIDITE	Ochrotrichia sp.	1200	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	300	Adultos y larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Na is sp.	90	Adultos y juveniles.
				MEGALOPTERA	CORYDALIDAE	Corydalus sp.	10	Larvas.
				ODONATA	LIBELLULIDAE	Libellula sp.	10	Ninfas.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	410	Ninfas.
					CAENIDAE	Caenis sp.	350	Ninfas.
Calachota	Sedimento	ARTHROPODA	INSECTA	PLECOPTERA	PERLIDAE	Neoperla sp.	10	Ninfas.
			11020111	TRICHOPTERA	HYDROPTILIDAE	Hydroptila sp.	120	Ninfas.
				-140110112101		Ochrotrichia sp.	230	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	40	Adultos y juveniles.
				DIPTERA	CHIRONOMIDAE	Simulium sp.	10	Larvas.
						Tanytarsus sp.	120	Larvas.

Referencia:

APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater. Biological Examination, Part 10500: Benthic Macroinvertebrates. 22th Edition. Washington. Elaborado:

Ing. VALENTIN MOGOLLON AVILA
CIP 48430

ANEXO 4 GALERÍA FOTOGRÁFICA

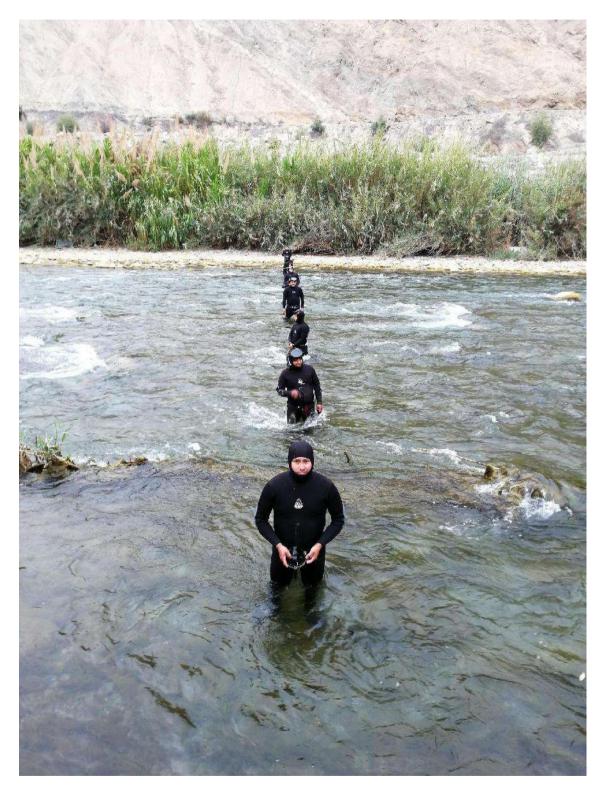


Figura 68. Procedimiento de muestreo

Figura 69. Muestras de camarón – Estación Pampilla

Figura 70. Muestras de camarón – Estación Lucumo

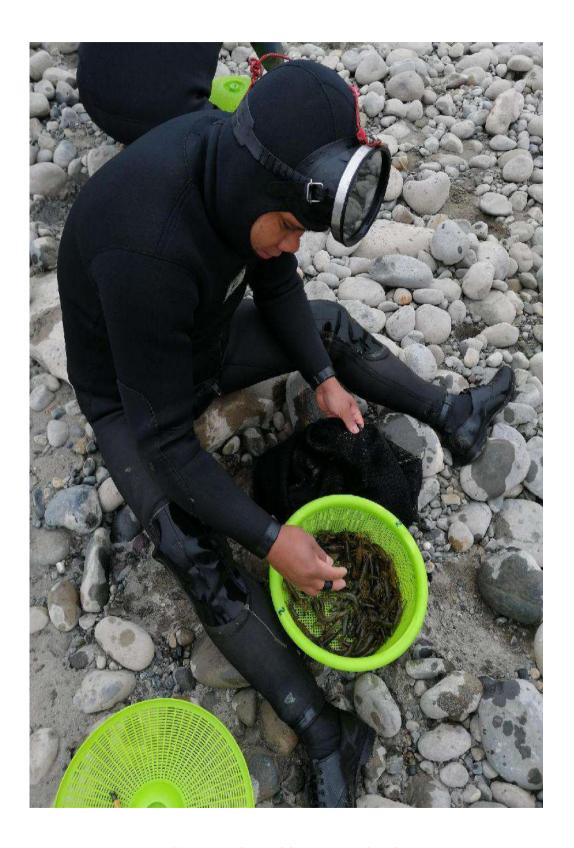


Figura 71. Conteo del camarón recolectado

Figura 72. Medida de la talla del camarón

Figura 73. Medida del peso del camarón

Figura 74. Extracción del camarón en el río Cañete

Figura 75. Grupo de trabajo – Julio 2019

0001570

INFORME

Número 38

Octubre, 2019 Lima - Perú

Trigésimo Octavo Monitoreo Biológico del Camarón de Río (Cryphiops caementarius) en el Río Cañete.

EQUIPO DE ESPECIALISTAS

Jefe de Proyecto de Monitoreo Hidrobiológico

Ing. Pesquero Ana Cecilia Muñoz Córdova Celepsa

Programa y Evaluación de Monitoreo

Ing. Pesquero Ana Cecilia Muñoz Córdova Tec. Abel Sulca Riveros. Celepsa

Representante de Compañía Eléctrica El Platanal S.A.

Ing. Carlos Adrianzen Panduro Gerente de Asuntos Ambientales e Interinstitucionales Celepsa

INDICE

I.	GEN	ERALIDADES	10
II.	OBJE	TIVO GENERAL	10
2	.1. (Objetivos Específicos	10
III.	MAR	CO LEGAL	11
IV.	ESTA	ACIONES DE MONITOREO	11
4	.1. I	Fichas de Estaciones de Monitoreo	14
V.	MET	ODOLOGÍA DE MONITOREO	41
5	.1. I	Muestreo de Camarones	41
	5.1.1.	Método de muestreo:	41
	5.1.2.	Área Barrida	41
	5.1.3.	Cálculo del Área de Estudio	42
	5.1.4.	Cálculo de Biomasa y Densidad	42
	5.1.5.	Tamaño de Muestra	43
5	.2. I	Parámetros Físico Químicos:	43
5	.3. I	Muestreo de Plancton	43
	5.3.1.	Fitoplancton:	44
	5.3.2.	Zooplancton:	44
5	.4. I	Muestreo de Bentos	45
	5.4.1.	Macroinvertebrados Bentónicos:	45
	5.4.2.	Fitoplancton Bentónico:	48
5	.5.	Técnicas Multivariadas de Análisis para la Relación entre Comunida	des
S	obre la	a Población de camarón y Calidad de agua en base a Bio-indicadores	49
	5.5.1. Cañe	Análisis de Frecuencias de Tamaños de Camarón de río a lo largo del te. 49	l río
	5.5.2.	Análisis del efecto ambiental sobre la distribución de tamaños	49
	5.5.3.	Análisis de Calidad de Agua en base a Indicadores Biológicos	49
	5.5.4.	Análisis del Efecto Ambiental sobre el Camarón de río.	49
5	.6. I	Personal de Monitoreo	50
		JLTADOS DE LA EVALUACIÓN DE LAS ESTACIONES PREO BIOLÓGICO	
6	.1. I	Evaluación del Camarón de río (Cryphiops caemenatrius)	51
	611	Tamaño do marocha	Г1

	6.1.2	2.	Proporción de Sexos	51
	6.1.2	2.	Madurez Gonadal	53
	6.1.3	3.	Composición de Tallas	55
	6.1.4		Abundancia y Biomasa	57
			ADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LA ES DE MONITOREO.	
7.	1.	Ten	nperatura (ºC):	61
7.	2.	pН	(UpH):	63
7.	3.	Oxí	geno (mg/L):	64
7.	4.	Dur	eza (mg/L):	65
7.	5.	CO	(mg/L):	66
7.	6.	Tur	bidez (NTU):	67
VII	[.	RES	SULTADOS DE LA EVALUACIÓN DEL PLANCTON	68
8.	1.	Mu	estreo Biológico	68
8.	2.	Fito	plancton	68
	8.2.1	.•	Riqueza y Abundancia de las estaciones muestreadas	69
	8.2.2	. .	Índices de Diversidad e Indicadores Biológicos	72
8.	3.	Zoo	plancton	73
	8.3.1	.•	Riqueza y Abundancia de las estaciones muestreadas	74
	8.3.2	2.	Índices de Diversidad e Indicadores Biológicos	76
IX.	RES	ULT	ADOS DE LA EVALUACIÓN DEL BENTOS	76
9.	1.	Mu	estreo Biológico	77
9.	2.	Mad	croinvertebrados bentónicos	77
	9.2.1	.•	Riqueza y Abundancia de las estaciones muestreadas	78
	9.2.2	·-	Índices de Diversidad Biológica	81
9.	3.	Fito	plancton bentónico	82
	9.3.1	.•	Riqueza y Abundancia de las estaciones muestreadas	84
	9.3.2	2.	Índices de Diversidad Biológica	85
X.	TEC	NIC	CAS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTI	RE
			ADES SOBRE LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGU	
			BIOINDICADORES.	
10).1.	Aná	ilisis de Frecuencias de Tamaños de Camarón a lo largo del río Cañete.	87

10.2.	Análisis del efecto ambiental sobre el camarón de rio	91
10.3.	Análisis de calidad de agua en base a indicadores biológicos	94
XI. CO	NCLUSIONES	101
XII. RE	COMENDACIONES	103
XIII.	BIBLIOGRAFÍA	104
XIV.	ANEXOS	107
MAR	CO TEÓRICO PARA EL PROGRAMA DE MONITOREO	107
GALI	FRÍA FOTOGRÁFICA	128

TABLAS

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Octubre 2019	12
Tabla 2. Actividades Estación N° 1 del Monitoreo – Octubre 2019	14
Tabla 3. Actividades Estación N° 2 del Monitoreo – Octubre 2019	15
Tabla 4. Actividades Estación N° 3 del Monitoreo – Octubre 2019	16
Tabla 5. Actividades Estación N° 4 del Monitoreo – Octubre 2019	17
Tabla 6. Actividades Estación N° 5 del Monitoreo – Octubre 2019	18
Tabla 7. Actividades Estación N° 6 del Monitoreo – Octubre 2019	19
Tabla 8. Actividades Estación N° 7 del Monitoreo – Octubre 2019	20
Tabla 9. Actividades Estación N° 8 del Monitoreo – Octubre 2019	21
Tabla 10. Actividades Estación N° 9 del Monitoreo – Octubre 2019	22
Tabla 11. Actividades Estación N° 10 del Monitoreo – Octubre 2019	23
Tabla 12. Actividades Estación N° 11 del Monitoreo – Octubre 2019	24
Tabla 13. Actividades Estación N° 12 del Monitoreo – Octubre 2019	25
Tabla 14. Actividades Estación N° 13 del Monitoreo – Octubre 2019	26
Tabla 15. Actividades Estación N° 14 del Monitoreo – Octubre 2019	27
Tabla 16. Actividades Estación N° 15 del Monitoreo – Octubre 2019	28
Tabla 17. Actividades Estación N° 16 del Monitoreo – Octubre 2019	29
Tabla 18. Actividades Estación N° 17 del Monitoreo – Octubre 2019	30
Tabla 19. Actividades Estación N° 18 del Monitoreo – Octubre 2019	31
Tabla 20. Actividades Estación N° 19 del Monitoreo – Octubre 2019	32
Tabla 21. Actividades Estación N° 20 del Monitoreo – Octubre 2019	33
Tabla 22. Actividades Estación N° 21 del Monitoreo – Octubre 2019	34
Tabla 23. Actividades Estación N° 22 del Monitoreo – Octubre 2019	35
Tabla 24. Actividades Estación N° 23 del Monitoreo – Octubre 2019	36
Tabla 25. Actividades Estación N° 24 del Monitoreo – Octubre 2019	37
Tabla 26. Actividades Estación N° 25 del Monitoreo – Octubre 2019	38
Tabla 27. Actividades Estación N° 26 del Monitoreo – Octubre 2019	39
Tabla 28. Actividades Estación N° 27 del Monitoreo – Octubre2019	40
Tabla 29. Metodología de Muestreo	
Tabla 30. Metodologías de Muestreo para Plancton Según Standard Methods	43
Tabla 31. Metodologías de Muestreo para Bentos Según Standard Methods	45
Tabla 32. Calidad de las Aguas según él %EPT	46
Tabla 33. Rangos del Índice de diversidad de Shannon-Wiener (H')	47
Tabla 34. Rangos del Índice de biodiversidad de Margalef (DMg)	47
Tabla 35. Rangos del Índice General Diatómico (IDG).	48
Tabla 36. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de	
Significancia del 95%	51
$\textbf{\textit{Tabla 37.}} \ \textit{N\'umero de Machos y Hembras, Porcentaje (\%) y Proporci\'on Sexual por estrato}$	
altitudinal	52
Tabla 38. Porcentaje de machos y hembras desde octubre 2007 a octubre 2019	53

Tabla 39. Madurez gonadal de machos y hembras por estratos altitudinales – octubre 2019 .	54
Tabla 40. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de	
octubre del 2007 a octubre 2019	54
Tabla 41. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud	55
Tabla 42. Abundancia y Biomasa por estrato altitudinal	58
Tabla 43. Valores de los parámetros físico químicos Julio 2019	61
Tabla 44. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – octubro	е
2019	86
Tabla 45. Datos Características de las Estacione de muestreo	108
Tabla 46. Resultados de los Muestreos Biométricos	109
Tabla 47. Número de Individuos Capturados por Pescador en cada Estación de muestreo	121
Tabla 48. Biomasa Capturada por Pescador en cada Estación de Muestreo	122

FIGURAS

Figura	1. Ubicación de las Estaciones de Monitoreo	13
Figura	2. Camaroneros Alineados para Aplicar la Metodología de Pesca	42
Figura	3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que	
son arr	astradas por la corriente del río	44
Figura	4. Personal colaborador en el monitoreo - Octubre 2019.	50
	5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos	
anuales		55
Figura	6. Distribución Poblacional por estratos – octubre 2019	56
Figura	7. Biomasa y Abundancia tallas - octubre 2019	56
	8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados des	
octubre	2004 a octubre 2019	59
Figura	9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados	
desde oc	tubre 2004 a octubre 2019	60
Figura	10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo octubre 2019	62
Figura	11. Comparativo de registro de temperatura (C°) del agua, desde octubre 2007 a octub	re
2019		62
Figura	12. Registro del pH del agua, por estratos en el monitoreo octubre 2019	63
Figura	13. Comparativo de registro de UpH del agua, desde octubre 2007 a octubre 2019	64
Figura	14. Registro del oxígeno en el agua, por estratos en el monitoreo octubre 2019	64
Figura	15. Comparativo de registro de oxígeno (mg/L) del agua, desde octubre 2007 a octubre	,
2019		65
Figura	16. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo octubre 2019	65
Figura	17. Comparativo de registro de dureza (mg/L) del agua, desde octubre 2007 a octubre	
2019		66
Figura	18. Registro de CO2 (mg/L) en el agua, por estratos en el monitoreo octubre 2019	66
Figura	19. Comparativo de registro de CO2 (mg/L) del agua, desde octubre 2007 a octubre	
2019		67
Figura	20. Registro de transparencia (NTU) en el agua, por estratos en el monitoreo octubre	
2019		67
Figura	21. Porcentaje de divisiones de fitoplancton identificado – octubre 2019	68
Figura	22. Abundancia relativa (%) de las especies de fitoplancton en las estaciones	
muestre	adas - octubre 2019	69
Figura	23. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - octubre	
2019		70
Figura	24. Cymbella affinis	70
Figura	25. Scenedesmus sp. (cenobio)	71
Figura	26. Anabaena sp.	72
Figura	27. Índices de diversidad aplicados al fitoplancton – octubre 2019	72
Figura	28. Porcentaje de divisiones de zooplancton identificado – octubre 2019	73

Figura 29. Abundancia relativa (%) de las especies de zooplancton en las estaciones	
muestreadas - octubre 2019.	73
Figura 30. Abundancia y riqueza del zooplancton en las estaciones muestreadas - octubre	
2019	74
Figura 31. Centropyxis sp.	74
Figura 32. Metacyclops sp.	75
Figura 33. Lepadella ovalis	75
Figura 34. Índices de diversidad aplicados al zooplancton – octubre 2019	76
Figura 35. Macroinvertebrados bentónicos identificados en octubre 2019	77
Figura 36. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las	
estaciones muestreadas - octubre 2019.	78
Figura 37. Riqueza y abundancia de las especies de bentos octubre 2019	78
Figura 38. Caenis sp.	79
Figura 39. Ochrotrichia sp.	79
Figura 40. Nais sp.	79
Figura 41. Physa venustula	80
Figura 42. Dorylaimus sp	80
Figura 43. Dugesia sp.	80
Figura 44. Hydra sp.	81
Figura 45. Índices de diversidad biológica de macroinvertebrados bentónicos	
encontrado en el presente monitoreo – octubre 2019	81
Figura 46. % EPT de macroinvertebrados bentónicos encontrados para el presente monitore	o –
octubre 2019.	82
Figura 47. Porcentaje del fitoplancton bentónico obtenido en el presente monitoreo – octubro	e
2019	83
Figura 48. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estacion	es
muestreadas – octubre 2019	83
Figura 49. Abundancia y riqueza del fitoplancton bentónico en las estaciones muestreadas -	-
octubre 2017	84
Figura 50. Fragillaria capucina	84
Figura 51. Cymbella affinis	84
Figura 52. Pediastrum boryanum (cenobio).	85
Figura 53. Calothrix sp. (tricoma)	85
Figura 54. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – octub	re
2019	86
Figura 55. IDG de fitoplancton bentónicos encontrados para el presente monitoreo octubre	
2019.	87
Figura 56. Frecuencia de tamaños por sexo (machos) y estación de muestreo	88
Figura 57. Frecuencia de tamaños por sexo (hembras) y estación de muestreo	89
Figura 58. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo	.90
Figura 59. Distribución de la frecuencia de tamaños por sexo	91

Figura	60. Abundancia de hembras y machos por estación de muestreo	92
Figura	61. Análisis de Correspondencia Canónica abundancia del camarón, variables	
ambient	ales e indicadores biológicos Monitoreo octubre 2019	93
Figura	62. Parámetros de monitoreo por estaciones octubre 2019	95
Figura	63. Abundancia de la comunidad del perifiton por estaciones de muestreo	98
Figura	64. Abundancia de la comunidad del bentos por estaciones de muestreo	98
Figura	65. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton.	99
Figura	66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macroben	tos
		100
Figura	67. Programa de Monitoreo	107
Figura	68. Procedimiento de muestreo	128
Figura	69. Muestras de camarón – Estación Jacayita	129
Figura	70. Muestras de camarón – Estación Piedra Coca	129
Figura	71. Conteo del camarón recolectado	130
Figura	72. Medida del peso del camarón	130
Figura	73. Medida de la talla del camarón	131
Figura	74. Extracción del camarón en el río Cañete	132
Fioura	75 Gruno de trahajo – Octubre 2019	132

I. GENERALIDADES

El presente Monitoreo biológico, es realizado como parte de los compromisos derivados del Estudio de Impacto Ambiental del Proyecto Hidroeléctrico Integral "El Platanal", de la Compañía Eléctrica El Platanal S.A. (CELEPSA), para realizarse en el río Cañete, aprobado por la Dirección de Asuntos Ambientales Normativos y Oficializada con Oficio Nº 519-99-MITINCI-VMI-DNI-DAN del 23 de agosto del 1999. Dicha aprobación contó con la recomendación de la Dirección de Asuntos Ambientales (DGAA) del Ministerio de Energía y Minas (Oficio Nº 174-99-EM/DGAA del 12 de julio del 1999).

El Programa de Monitoreo Biológico se inicia con la Línea Base del Camarón de Río (*Cryphiops caementarius*) en julio del 2001. Dicha evaluación fue la primera del Programa en referencia, la cual contempla la realización de evaluaciones anuales en los meses de julio y octubre, para cada fase del proyecto (fase previa, fase de construcción y fase de operación), en cuatro sectores del río Cañete (Putinza – Capillucas, Quebrada Chicchicay – Chavín, Quebrada Riachuelo – Catahuasi, San Juan y San Juanito). Posteriormente debido a la naturaleza de la especie se amplió hacia los sectores de Alto Húngara – Caltopa y Boca de Río.

Compañía Eléctrica El Platanal S.A. (CELEPSA) ejecutó el Trigésimo Octavo Monitoreo de Camarón de río (*Cryphiops caementarius*), correspondiente a la Fase de Operación y segundo monitoreo del año 2019, cuyos resultados consiste en evaluar las condiciones biológicas en:

- Veintisiete zonas determinadas para muestras de camarones (detallándose los parámetros poblacionales: número de individuos o abundancia, biomasa, proporción sexual total y condición reproductiva de la población) y agua (Parámetros físico-químicos);
- Dieciocho zonas determinadas para plancton (fitoplancton y zooplancton) y bentos (macroinvertebrados bentónicas y fitoplancton bentónico).

II. OBJETIVO GENERAL

Determinar los principales parámetros de la población de camarón de río (*Cryphiops caementarius*) presente en los sectores del río Cañete comprendidos entre los 0 y 1700 m.s.n.m. en nuestra etapa de Operación.

2.1. Objetivos Específicos

- Determinar la abundancia y biomasa del camarón de río por sexo y estrato altitudinal.
- Determinar la proporción sexual total y por estrato altitudinal.
- Determinar la estructura de tallas por estrato altitudinal.
- Determinar la condición reproductiva de la población.
- Obtener los principales parámetros físicos-químicos en los sectores evaluados.
- Determinar los principales indicadores biológicos en relación al recurso camarón de río.
- Analizar cualitativa y cuantitativamente el plancton (Fitoplancton y zooplancton) y bentos (Fitoplancton bentónico y macroinvertebrados bentónicos) relacionando con la alimentación del camarón de río (*Cryphiops caementarius*).

III. MARCO LEGAL

En la legislación ambiental vigente, la actividad eléctrica, se realiza en el marco de lo establecido en la Ley de Concesiones Eléctricas (D.L. N° 25844), la Ley General del Ambiente Ley N° 28611, el Decreto legislativo 757 para el Crecimiento de la Inversión Privada, y disposiciones legales bajo el concepto de Desarrollo Sostenible de los recursos naturales.

Normatividad complementaria como el Reglamento para la Protección Ambiental en las Actividades Eléctricas (D.S. N° 009-93-EM) y de las servidumbres de embalses de aguas para fines energéticos, industriales y mineros, norman la protección del ambiente por la actividad energética.

El monitoreo ambiental se realiza siguiendo el Protocolo de Monitoreo de Calidad de Agua contenida en las Guías Ambientales elaboradas por el Ministerio de Energía y Minas.

Para la calidad de agua estarán determinados por los Estándares Nacionales de Calidad Ambiental dadas en el D.S. Nº 002-2008-MINAM.

Protocolo Nacional de Monitoreo de la Calidad de los Cuerpos Naturales de Agua Superficial Resolución Jefatural N° 182-2011-ANA.

IV. ESTACIONES DE MONITOREO

De acuerdo al Plan de Manejo Ambiental del Proyecto Hidroeléctrico El Platanal y tomando las recomendaciones del Instituto del Mar del Perú (Imarpe) se ha estandarizado a tres estaciones por estrato altitudinal de 200 m.s.n.m. Cabe mencionar que el primer estrato es el único que se considera de 0 - 100 m.s.n.m., debido a la abundancia que se encuentra de la especie en dicho sector por ser zona de reserva o reclutamiento y que muestra condiciones distintas que amerita que sea evaluada con más énfasis. Se han destinado 27 puntos de control (Tabla 1), con sus respectivas ubicaciones (Figura 1).

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Octubre 2019

SECTORES EVALUADOS	ALTITUD	ESTACIÓN	ESTRATOS
		PAMPILLA	0 - 100
Boca de Río	0 - 100	LUCUMO	0 - 100
		FORTALEZA	0 - 100
		ALTO HUNGARA	100 - 300
Alto Hungará - Caltopa	100 - 300	CONCON	100 - 300
		CALTOPA	100 - 300
		SOCSI	300 - 500
Socsi - Lunahuaná	300 - 500	PAULLO	300 - 500
		LUNAHUANA	300 - 500
		CATAPALLA	500 - 700
Catapalla - Pacarán	500 - 700	JACAYITA	500 - 700
		PACARÁN	500 - 700
		HUAGIL	700 - 900
Huagil - Machuranga	700 - 900	ZUÑIGA	700 - 900
		MACHURANGA	700 - 900
		SAN JUANITO	900 - 1100
San Juanito - La Tolva	900 - 1100	PIEDRA COCA	900 - 1100
		LA TOLVA	900 - 1100
		HUALLAMPI	1100 - 1300
Huallampi - Canchán	1100 - 1300	TACUASIMONTE	1100 - 1300
		CANCHAN	1100 - 1300
		ESCARILLA	1300 - 1500
Escarilla - Chicchicay	1300 - 1500	PUENTE CHAVIN	1300 - 1500
		CHICHICAY	1300 - 1500
		CAPILLUCAS	1500 - 1700
Capillucas - Calachota	1500 - 1700	PUENTE PUTINZA	1500 - 1700
		CALACHOTA	1500 - 1700

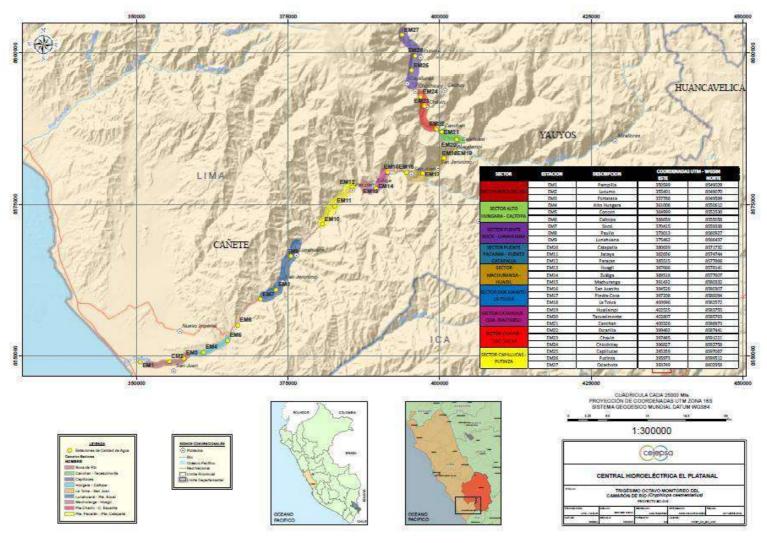


Figura 1. Ubicación de las Estaciones de Monitoreo

4.1. Fichas de Estaciones de Monitoreo

Tabla 2. Actividades Estación N° 1 del Monitoreo − Octubre 2019

celepsa	ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E-1										
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.								
Zona de Muestreo	Pampilla										
Ubicación					Coordenada	ıs					
Región	Lima				UTM E		351495				
Provincia	Cañete			UTM S		8548755					
Sector Evaluado	Pampilla - l	Fortaleza		Fecha		16/10/2019					
Referencia	0 a 100 m.s.ı	ı.m.			Hora 11:00						
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez(NTU)	Caudal (m3/s)	
	Х	Х	Х	х	х	х	х	х	x	х	
Muestras Biológicas	E-01BC	E-01BF	E-01BZ	E-01BFb	E-01Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		x									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				x							
Biológico Macroinvertebrados Bentónicos					х						

Tabla 3. Actividades Estación N° 2 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓN DE MONITOREO								
Estación de Monitoreo	E-2												
Nombre de la Empresa	Compañía Elé	éctrica El Plat	anal S.A.										
Zona de Muestreo	Lúcumo	•											
Ubicación	_				Coorde	nadas	_						
Región	Lima				UTM E		355396						
Provincia	Cañete				UTM S		8549090						
Sector Evaluado	Pampilla - Fo	ortaleza			Fecha		16/10/2019						
Referencia	0 a 100 m.s.n.	m.			Hora		15:12	5:12					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)			
	х	х	х	х	х	х	х	х	х	х			
Muestras Biológicas	E-02BC												
Biológico Camarón	х												
Biológico Fitoplancton													
Biológico Zooplancton													
Biológico Fitoplancton Bentónico													
Biológico Macroinvertebrados Bentónicos													

Tabla 4. Actividades Estación N° 3 del Monitoreo – Octubre 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E-3											
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.									
Zona de Muestreo	Fortaleza											
Ubicación	<u> </u>				Coordenad	as						
Región	Lima				UTM E		358533					
Provincia	Cañete				UTM S	UTM S		8550047				
Sector Evaluado	Pampilla - l	Fortaleza			Fecha	Fecha 17/10/2019			.9			
Referencia	0 a 100 m.s.i	n.m.			Hora		10:06					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	x	х	х	х	X	х	х	x	x	x		
Muestras Biológicas	E-03BC	E-03BF	E-03BZ	E-03BFb	E-03Bmb							
Biológico Camarón	x											
Biológico Fitoplancton		х										
Biológico Zooplancton			Х									
Biológico Fitoplancton Bentónico				x								
Biológico Macroinvertebrados Bentónicos					х							

Tabla 5. Actividades Estación N° 4 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E-4									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Alto Hunga	rá								
Ubicación					Coorde	enadas				
Región	Lima				UTM E	ı	362981			
Provincia	Cañete				UTM S		8551469			
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		17/10/2019			
Referencia	100 a 200 m.	s.n.m.			Hora		12:45			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	x	х	х	х	х
Muestras Biológicas	E-04BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 6. Actividades Estación N° 5 del Monitoreo – Octubre 2019

celepsa				:	ESTACIÓN DE	MONITORE	EO			
Estación de Monitoreo	E-5									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Concón									
Ubicación					Coordenadas					
Región	Lima				UTM E		365020			
Provincia	Cañete				UTM S		8552682			
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		17/10/201	9		
Referencia	100 a 200 m	s.n.m.			Hora		16:00			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	Х	х
Muestras Biológicas	E-05BC	E-05BF	E-05BZ	E-05BFb	E-05Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					x					

Tabla 7. Actividades Estación N° 6 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 6									
Nombre de la Empresa	Compañía E	lléctrica El P	latanal S.A.							
Zona de Muestreo	Caltopa									
Ubicación	-				Coorde	enadas				
Región	Lima				UTM E	ı	366642			
Provincia	Cañete				UTM S		8555256			
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		18/10/2019			
Referencia	100 a 200 m.	s.n.m.			Hora		09:18			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	x	х	x	x	х	х	X	x
Muestras Biológicas	E-06BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 8. Actividades Estación N° 7 del Monitoreo – Octubre 2019

celepsa				EST	ACIÓN DE M	ONITOREO				
Estación de Monitoreo	E- 7									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Puente Socs	i								
Ubicación					Coordenadas	3				
Región	Lima				UTM E		369518			
Provincia	Cañete				UTM S		8558703			
Sector Evaluado	Pte. Socsi - I	Lunahúana			Fecha		18/10/2019	9		
Referencia	300 a 500 m.	s.n.m.			Hora		11:42			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-07BC	E-07BF	E-07BZ	E-07BFb	E-07Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 9. Actividades Estación N° 8 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 8									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Paullo									
Ubicación					Coorde	nadas				
Región	Lima				UTM E		3772920			
Provincia	Cañete				UTM S		8560702			
Sector Evaluado	Pte. Socsi - I	Lunahúana			Fecha		18/10/2019			
Referencia	300 a 500 m.	s.n.m.			Hora		14:42			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	x	х	х	х	х	х	x	х
Muestras Biológicas	E-08BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 10. Actividades Estación N° 9 del Monitoreo – Octubre 2019

celepsa				E	STACIÓN DE	MONITOR	EO			
Estación de Monitoreo	E- 9									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Lunahuana									
Ubicación					Coordenadas	5				
Región	Lima				UTM E		374791			
Provincia	Cañete				UTM S		8566056			
Sector Evaluado	Pte. Socsi - I	Lunahuana			Fecha		18/10/201	9		
Referencia	300 a 500 m	.s.n.m.			Hora		16:54			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-09BC	E-09BF	E-09BZ	E-09BFb	E-09Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			Х							
Biológico Fitoplancton Bentónico				Х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 11. Actividades Estación N° 10 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 10									
Nombre de la Empresa	Compañía E	lléctrica El P	latanal S.A.							
Zona de Muestreo	Puente Cata	palla								
Ubicación					Coorde	enadas				
Región	Lima				UTM E		380864			
Provincia	Cañete				UTM S		8572141			
Sector Evaluado	Pte. Catapal	la - Pte. Paca	ırán		Fecha		19/10/2019			
Referencia	500 a 700 m.	s.n.m.			Hora		15:36			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	x	х	х	х	х	х	х	х
Muestras Biológicas	E-10BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 12. Actividades Estación N° 11 del Monitoreo – Octubre 2019

celepsa				E	STACIÓN DI	E MONITOR	REO			
Estación de Monitoreo	E- 11									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Jacaya									
Ubicación					Coordenada	ıs				
Región	Lima				UTM E		382828			
Provincia	Cañete				UTM S		8574906			
Sector Evaluado	Pte. Catapal	lla - Pte. Paca	arán		Fecha		19/10/2019	9		
Referencia	500 a 700 m	.s.n.m.			Hora		12:48			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	x	х	х	х	x	х
Muestras Biológicas	E-11BC	E-11BF	E-11BZ	E-11BFb	E-11Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			Х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					x					

Tabla 13. Actividades Estación N° 12 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 12									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Pacarán	ı								
Ubicación					Coorde	enadas				
Región	Lima				UTM E		385505			
Provincia	Cañete				UTM S		8577888			
Sector Evaluado	Pte. Catapal	la - Pte. Paca	ırán		Fecha		19/10/2019			
Referencia	500 a 700 m.	s.n.m.			Hora		10:45			_
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-12BC									
Biológico Camarón	х									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 14. Actividades Estación N° 13 del Monitoreo – Octubre 2019

celepsa				E	STACIÓN DE	MONITOR	ЕО					
Estación de Monitoreo	E- 13											
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.									
Zona de Muestreo	Huagil											
Ubicación		Coordenadas										
Región	Lima											
Provincia	Cañete											
Sector Evaluado	Huagil - Ma	churanga			Fecha		19/10/2019	9				
Referencia	700 a 900 m	s.n.m.			Hora		09:15					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	Х	х		
Muestras Biológicas	E-13BC	E-13BF	E-13BZ	E-13BFb	E-13Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton			х									
Biológico Fitoplancton Bentónico				х								
Biológico Macroinvertebrados Bentónicos					х							

Tabla 15. Actividades Estación N° 14 del Monitoreo – Octubre 2019

celepsa				ES	STACIÓ	N DE MONI	TOREO			
Estación de Monitoreo	E- 14									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.							
Zona de Muestreo	Zuñiga									
Ubicación					Coorde	enadas				
Región	Lima				UTM E		389452			
Provincia	Cañete				UTM S		8577617			
Sector Evaluado	Huagil - Ma	churanga			Fecha		19/10/2019			
Referencia	700 a 900 m.	s.n.m.			Hora		12:15			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	x	х	х	x	х	х	x	х
Muestras Biológicas	E-14BC									
Biológico Camarón	x									
Biológico Fitoplancton										
Biológico Zooplancton										
Biológico Fitoplancton Bentónico										
Biológico Macroinvertebrados Bentónicos										

Tabla 16. Actividades Estación N° 15 del Monitoreo – Octubre 2019

celepsa]	ESTACIÓN DE	MONITORE	EO			
Estación de Monitoreo	E- 15									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Machurang	a								
Ubicación					Coordenadas					
Región	Lima				UTM E		391360			
Provincia	Cañete				UTM S		8580414			
Sector Evaluado	Huagil - Ma	churanga			Fecha		23/10/201	9		
Referencia	700 a 900 m	.s.n.m.			Hora		11:30			
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	Х	х	х	х	x	х
Muestras Biológicas	E-15BC	E-15BF	E-15BZ	E-15BFb	E-15Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		х								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 17. Actividades Estación N° 16 del Monitoreo – Octubre 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E- 16	- 16										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	San Juanito											
Ubicación					Coorde	nadas						
Región	Lima				UTM E		394362					
Provincia	Cañete				UTM S		8580261					
Sector Evaluado	San Juanito	- La Tolva			Fecha		22/01/2019					
Referencia	900 a 1 100 r	n.s.n.m.			Hora		15:45					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	x	х	x	х	x	х	х	х	х		
Muestras Biológicas	E-16BC	E-16BC										
Biológico Camarón	x											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 18. Actividades Estación N° 17 del Monitoreo – Octubre 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E- 17	- 17										
Nombre de la Empresa	Compañía I	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Piedra Coca	iedra Coca										
Ubicación		Coordenadas										
Región	Lima				UTM E		397270					
Provincia	Cañete				UTM S		8580150					
Sector Evaluado	San Juanito	- La Tolva			Fecha		22/10/2019					
Referencia	900 a 1 100 ı	m.s.n.m.			Hora		13:50					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	x	x	x	х	х	х	х	х	X	х		
Muestras Biológicas	E-17BC	E-17BC E-17BF E-17BZ E-17BFb										
Biológico Camarón	х											
Biológico Fitoplancton		x										
Biológico Zooplancton			х									
Biológico Fitoplancton Bentónico				х								
Biológico Macroinvertebrados Bentónicos					х							

Tabla 19. Actividades Estación N° 18 del Monitoreo – Octubre 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E- 18	E- 18										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	La Tolva	•										
Ubicación					Coorde	enadas						
Región	Lima				UTM E		400749					
Provincia	Cañete				UTM S		8582693					
Sector Evaluado	San Juanito	- La Tolva			Fecha		22/10/2019					
Referencia	900 a 1 100 r	n.s.n.m.			Hora		11:15					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	x	x	x	х	х	х	х	х	х	x		
Muestras Biológicas	E-18BC											
Biológico Camarón	х	x										
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 20. Actividades Estación N° 19 del Monitoreo – Octubre 2019

celepsa	ESTACIÓN DE MONITOREO											
Estación de Monitoreo	E- 19	E- 19										
Nombre de la Empresa	Compañía I	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Huayllampi	Huayllampi										
Ubicación		Coordenadas										
Región	Lima				UTM E		401629					
Provincia	Cañete				UTM S		8583188					
Sector Evaluado	E-21Bmb				Fecha		22/10/2019					
Referencia	1 100 a 1 300	0 m.s.n.m.			Hora		09:41	09:41				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	x	х		
Muestras Biológicas	E-19BC	E-19BF	E-19BZ	E-19BFb	E-19Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton			Х									
Biológico Fitoplancton Bentónico				х								
Biológico Macroinvertebrados Bentónicos					х							

Tabla 21. Actividades Estación N° 20 del Monitoreo – Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 20	20									
Nombre de la Empresa	Compañía E	ompañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Tacuasimon	te									
Ubicación					Coorde	nadas					
Región	Lima				UTM E		402759				
Provincia	Cañete				UTM S		8585752				
Sector Evaluado	Huayllampi	- Canchan			Fecha		21/10/2019				
Referencia	1 100 a 1 300	m.s.n.m.			Hora		15:24			_	
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	x	x	x	х	x	x	х	x	Х	х	
Muestras Biológicas	E-20BC										
Biológico Camarón	х										
Biológico Fitoplancton											
Biológico Zooplancton											
Biológico Fitoplancton Bentónico											
Biológico Macroinvertebrados Bentónicos											

Tabla 22. Actividades Estación N° 21 del Monitoreo – Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 21	21									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Canchan										
Ubicación					Coordenadas	5					
Región	Lima				UTM E		400851				
Provincia	Cañete				UTM S		8586154				
Sector Evaluado	Huayllampi	Huayllampi - Canchan Fecha 21/10/2019									
Referencia	1 100 a 1 300	m.s.n.m.			Hora		13:55				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	х	х	
Muestras Biológicas	E-21BC	E-21BF	E-21BZ	E-21BFb	E-21Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton		x x									
Biológico Fitoplancton Bentónico				Х							
Biológico Macroinvertebrados Bentónicos					х						

Tabla 23. Actividades Estación N° 22 del Monitoreo − Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 22	22									
Nombre de la Empresa	Compañía E	mpañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Escarilla										
Ubicación					Coorde	enadas					
Región	Lima				UTM E	ı	399447				
Provincia	Cañete				UTM S		8587465				
Sector Evaluado	Escarilla - C	Escarilla - Chicchicay Fecha 21/10/2019									
Referencia	1 300 a 1 500	m.s.n.m.			Hora		11:55				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	x	x	х	х	х	х	х	х	X	х	
Muestras Biológicas	E-22BC										
Biológico Camarón	x										
Biológico Fitoplancton											
Biológico Zooplancton											
Biológico Fitoplancton Bentónico											
Biológico Macroinvertebrados Bentónicos											

Tabla 24. Actividades Estación N° 23 del Monitoreo − Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 23	3									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Pte. Chavín										
Ubicación					Coordenadas						
Región	Lima				UTM E		397486				
Provincia	Cañete				UTM S		8591178				
Sector Evaluado	Escarilla - C	Escarilla - Chicchicay Fecha 21/10/2019									
Referencia	1 300 a 1 500) m.s.n.m.			Hora 09:54						
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	x	x	х	х	х	х	х	x	x	x	
Muestras Biológicas	E-23BC	E-23BF	E-23BZ	E-23BFb	E-23Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		x									
Biológico Zooplancton		x									
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					X						

Tabla 25. Actividades Estación N° 24 del Monitoreo – Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 24	4									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Chicchicay										
Ubicación					Coordenadas						
Región	Lima				UTM E		396727				
Provincia	Cañete				UTM S		8593055				
Sector Evaluado	Escarilla - C	Escarilla - Chicchicay Fecha 20/10/2019									
Referencia	1 300 a 1 50	0 m.s.n.m.			Hora		15:05				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	х	х	
Muestras Biológicas	E-24BC	E-24BF	E-24BZ	E-24BFb	E-24Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton		X X									
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					х						

Tabla 26. Actividades Estación N° 25 del Monitoreo – Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 25	25									
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Capillucas										
Ubicación					Coordenadas						
Región	Lima				UTM E		395327				
Provincia	Cañete				UTM S		8597239				
Sector Evaluado	Capillucas -	Capillucas - Calachota Fecha 20/10/2019									
Referencia	1 500 a 1 70	0 m.s.n.m.			Hora	Hora 13:29					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	х	х	
Muestras Biológicas	E-25BC	E-25BF	E-25BZ	E-25BFb	E-25Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton		x									
Biológico Fitoplancton Bentónico		x									
Biológico Macroinvertebrados Bentónicos					х						

Tabla 27. Actividades Estación N° 26 del Monitoreo – Octubre 2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 26	26									
Nombre de la Empresa	Compañía E	léctrica El P	latanal S.A.								
Zona de Muestreo	Pte. Putinza										
Ubicación					Coorde	nadas					
Región	Lima				UTM E		395972				
Provincia	Cañete				UTM S		8599502				
Sector Evaluado	Capillucas -	Calachota			Fecha 20/10/2						
Referencia	1 500 a 1 700	m.s.n.m.			Hora		11:25				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	Х	Х	х	х	х	х	
Muestras Biológicas	E-26BC										
Biológico Camarón	х										
Biológico Fitoplancton											
Biológico Zooplancton											
Biológico Fitoplancton Bentónico											
Biológico Macroinvertebrados Bentónicos											

Tabla 28. Actividades Estación N° 27 del Monitoreo – Octubre2019

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 27										
Nombre de la Empresa	Compañía E	mpañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Calachota										
Ubicación					Coordenadas	5					
Región	Lima				UTM E		394187				
Provincia	Cañete				UTM S		8601969				
Sector Evaluado	Capillucas -	Calachota			Fecha		20/10/201	9			
Referencia	1 500 a 1 700	m.s.n.m.			Hora		10:01				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	Х	х	
Muestras Biológicas	E-27BC	E-27BF	E-27BZ	E-27BFb	E-27Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		х									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				x							
Biológico Macroinvertebrados Bentónicos					x						

V. METODOLOGÍA DE MONITOREO

La presente evaluación se llevó a cabo del 16 al 23 de octubre 2019, identificando las condiciones ambientales y bioecológicas, en las que se encuentra las estaciones de monitoreo establecidas en la Línea Base del Camarón de río (*Cryphiops caementarius*) del Proyecto Hidroeléctrico "El Platanal", a través de la evaluación del camarón de río (*Cryphiops caementarius*), determinación de la calidad del agua de río y la caracterización de plancton y bentos.

Las ubicaciones de las estaciones de monitoreo fueron realizadas mediante la ayuda de un GPSmap 76CSx marca GARMIN, en la cual se registró las características del cuerpo de agua, tomando en cuenta el ancho y profundidad promedios, sección longitudinal del río muestreado, tipo de fondo, de vegetación ribereña y transparencia del sector de río monitoreado.

Las altitudes de las estaciones de monitoreo fluctuaron entre 0 m.s.n.m. (Pampilla) y 1700 m.s.n.m. (Calachota).

5.1. Muestreo de Camarones

5.1.1. Método de muestreo:

La estimación de la población presente en el área de estudio se basó en la aplicación del método del área barrida (Espino, 1984), estimándose las densidades en abundancia (número de individuos) y biomasa (peso de individuos) por estación, y extrapolando los datos a cada estrato (Tabla 29).

Tabla 29. Metodología de Muestreo

Parámetros	Metodología
Camarones	Aplicación del Método del Área Barrida – Modificado (Espino, 1984)
te: Espino, 1984	

5.1.2. Área Barrida

En cada sección de evaluación del cauce, se consideró una longitud de 40 m, y el ancho promedio de la misma; la colecta de muestras se realizó mediante el método de buceo diurno, ocho pescadores experimentados realizaron las capturas de camarones, los cuales fueron contados, pesados, medidos y sexados en campo. En la colecta, se contabiliza también los camarones que no llegan a ser capturados.

Debemos indicar que CELEPSA realizó una selección muy exhaustiva de los extractores con los que trabajo para la captura de la muestra, los cuales fueron elegidos por su esfuerzo de pesca, contratando a los de mayor capacidad, lo que ha permitido lograr una estimación adecuada de las poblaciones en nuestros puntos de muestreo en el presente monitoreo.

Se debe considerar la variabilidad que existe al usar a un extractor como aparejo de pesca, pues sus resultados varían de acuerdo a la capacidad de pesca del mismo, motivo por el que se selecciona y trabaja con el mismo grupo humano mientras su nivel de esfuerzo de pesca se mantenga (Figura 2).

Figura 2. Camaroneros Alineados para Aplicar la Metodología de Pesca

5.1.3. Cálculo del Área de Estudio

El área del espejo de agua y profundidad promedio de cada estrato se calculó sobre la base de la longitud del curso de agua (definido por cartografía) y el ancho promedio del lecho (establecido en el terreno). Se tuvo en cuenta los meandros y ramales del río para realizar las correcciones en el área de cada estrato. El río presentó un cauce bastante homogéneo entre los estratos $0-1\,700\,$ m.s.n.m., teniéndose para este año el encausamiento y limpieza de rio en los estratos de $0-500\,$ m.s.n.m., por parte del Gobierno Regional homogenizando el área sin ramales como en años anteriores.

Cabe destacar que los valores son estimados y que varían dependiendo de las estaciones del año y fluctuaciones del caudal del río. Por lo que desde el 2014 se ha presentado un incremento del área de espejo de agua en los sectores bajos como Pampilla debido a la operación del embalse Paucarcocha – Celepsa, lo que permite mantener el incremento del área hasta la fecha, generando como consecuencia una mayor habitad y mejores condiciones de habitabilidad para el camarón de río.

5.1.4. Cálculo de Biomasa y Densidad

La biomasa se estimó considerando el área disponible de evaluación y la densidad (g/m2), aplicando la siguiente ecuación:

BIOMASA = Área disponible (m^2) / Densidad (g/m^2)

El área disponible (m²) es el porcentaje del área total del río que posee las condiciones adecuadas del hábitat de los camarones mediante una estimación por medio de la observación directa del ancho y longitud del transecto evaluado (40 m), esta área se calculó para cada estación de monitoreo.

La densidad se calculó considerando dos datos: las capturas de los camarones obtenidas en peso (gramos) y el número de individuos por área total disponible (Ind/m²). El peso total de los individuos capturados (gramos) por unidad de superficie (m²) se calculó en función al esfuerzo pesquero (CPUE) en el área de pesca. Para determinar el CPUE se contabilizó los camarones obtenidos por cada camaronero en cada estación de monitoreo, así como los ejemplares que escaparon de sus manos.

Para obtener la frecuencia de tallas y la relación talla - peso se registró la longitud (milímetros), peso (gramos), sexo y el desarrollo gonadal se clasificó según los estadios definidos por *Pérez et*

al. (1977), citado en *Viacava et al*. (1978) de cada individuo capturado por estación de monitoreo y para el total de las estaciones.

5.1.5. Tamaño de Muestra

Examinar la población entera, lo cual puede resultar físicamente imposible o no práctico, puede examinarse una muestra de la población con el propósito de inferir los resultados encontrados. Una técnica para obtener muestras representativas de la población es el muestreo aleatorio, ya que es un proceso que asegura en cualquier momento la misma o igual probabilidad de ser incluido en la muestra a todos los elementos que pertenezcan a la población en dicho momento.

Si la población es finita, es decir conocemos el total de la población y deseásemos saber cuántos del total tendremos que estudiar, la respuesta se representa en la siguiente formula:

$$n = \frac{N * Z_a^2 * p * q}{d^2 * (N-1) + Z_a^2 * p * q}$$

5.2. Parámetros Físico Químicos:

Para la ubicación de las estaciones de monitoreo previamente determinadas, se utilizó un GPSmap 76CSx marca GARMIN y para los análisis de agua su uso un kit FF1A, un multiparámetro y un Turbidimetro Digital, donde se midieron los siguientes parámetros físico-químicos del agua:

- Oxígeno Disuelto (mg/L)
- Dureza (mg/L)
- Temperatura del agua (°C)
- pH (UpH)
- Nitritos (mg/L)
- CO₂ (mg/L)
- Turbidez (NTU)

Además de estos parámetros, se determinó visualmente otras características del hábitat de las especies evaluadas como: ancho y profundidad, tipo de fondo, color, transparencia, etc.

5.3. Muestreo de Plancton

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 30. Metodologías de Muestreo para Plancton Según Standard Methods

Parámetros	Metodología
Fitoplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200F)
Zooplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200G)

Fuente: APHA-AWWA-WEF, 2012

5.3.1. **Fitoplancton:**

Para la colección de fitoplancton se tuvo en cuenta el tipo de cuerpo de agua de donde se toma la muestra.

Las aguas claras o cristalinas son oligotróficas, o sea, que tienen muy baja densidad de fitoplancton, por lo que es colocado en el medio acuático concentrándose en la red vertido en un frasco, para los análisis en las estaciones.

Las muestras de Fitoplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de 20 µm de abertura de malla. La red fue colocada en el río, durante 20 minutos. Con estos datos y conociendo además el diámetro de la boca

de la red planctónica, se calcula el volumen filtrado.

Las muestras se colectan en frascos de 500 mL debidamente rotuladas con la estación respectiva, para su preservación se le adiciona Lugol.

Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de N° cel./Litro. (Figura 3).

Figura 3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que son arrastradas por la corriente del río.

5.3.2. **Zooplancton:**

Para colectar zooplancton, se tomó en cuenta las mismas consideraciones que para fitoplancton. Por lo general, las poblaciones de zooplancton se distribuyen en estratos, lo que añade cierta dificultad a la interpretación de los resultados.

Las muestras de zooplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de $10~\mu m$ de abertura de malla. La red fue colocada en el río, durante 20~minutos. Con estos datos y conociendo además el diámetro de la boca de la red planctónica, se calcula el volumen filtrado. Las muestras se colectan en frascos de 500~mL debidamente rotuladas con la estación respectiva,

para su preservación se le adiciona Formalina al 4% y/o alcohol al 96°. Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de Org./m³.

5.4. Muestreo de Bentos

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 31. Metodologías de Muestreo para Bentos Según Standard Methods

Parámetros	Metodología
Macroinvertebrados	APHA-AWWA-WPCF – Standard Methods (Section 10500B – 10500C)
Perifiton	APHA-AWWA-WPCF – Standard Methods (Section 10300B – 10300C)

Fuente: APHA-AWWA-WEF, 2012

5.4.1. Macroinvertebrados Bentónicos:

En cada estación de monitoreo se colectaron muestras biológicas de macroinvertebrados bentónicos, las que se obtuvieron utilizando una RED SURBER con un marco de un área de 30 x 30 cm de sustrato.

Para su recolección se remueve las piedras del fondo del río, lavándolas en contra de la corriente del agua para colectarlas en un frasco con formalina al 4% y/o alcohol a 96°.

En el laboratorio la muestra es limpiada del sustrato para el reconocimiento de las especies y el conteo dado en Org./m².

Valor Indicador de los Macroinvertebrados Bentónicos

Los índices bióticos son una de las maneras más comunes de establecer la calidad biológica de los ríos. Se suelen expresar en forma de un valor numérico único que sintetiza las características de todas las especies presentes. Habitualmente consisten en la combinación de dos o tres propiedades de la asociación: la riqueza de taxa y la tolerancia/intolerancia a la contaminación para los índices cualitativos, y estos junto a la abundancia (absoluta o relativa) para los índices cuantitativos.

La mayor parte de los investigadores señalan que dentro de los grupos faunísticos que son considerados como bioindicadores de la calidad ambiental, los macroinvertebrados acuáticos son los mejores bioindicadores de la calidad del agua (Arenas, 1993; Barbour *et al.*, 1995; Figueroa, 1999; Alonso *et al.*, 2002; Fenoglio et al., 2002; Hynea & Maher, 2003; Cain *et al.*, 2004; Leiva, 2004; Alonso & Camargo, 2005).

Los macroinvertebrados bentónicos se encuentran en todo tipo de ambiente acuático de agua dulce, como ríos o lagunas, donde son importantes para el monitoreo de ese ecosistema acuático en particular (Cummnig & Klug, 1979).

El uso de los macroinvertebrados bentónicos proporciona excelentes señales sobre la calidad del agua, y al usarlos en el monitoreo, puede entender claramente el estado en que ésta se encuentra, algunos de ellos requieren agua de buena calidad para sobrevivir, otros en cambio, resisten, crecen y abundan cuando hay contaminación.

Para estimar la calidad del agua se utilizaron medidas de composición y riqueza. Las medidas de composición y riqueza incluyen número total de especies, número total de individuos, Diversidad de Shannon-Weaver (H'), Equidad de Pielou (J'), Riqueza de especies (d) y %EPT de acuerdo al criterio empleado por Egler (2002).

Índice Ecológico

%EPT (Ephemeroptera + Plecoptera + Trichoptera)

El Índice Biótico es una medida cuantitativa de la diversidad, de especies de bentos, con la información cualitativa sobre la sensibilidad ecológica de taxones individuales en una expresión numérica simple. En este caso se va utilizar el índice EPT que es la suma de la abundancia de individuos de los grupos sensible: Ephemeroptera, Plecoptera y Tricoptera entre la abundancia total de los individuos bentónicos.

Estos insectos son considerados mayormente como organismos de aguas limpias y su presencia generalmente está relacionada a aguas de buena calidad.

De acuerdo al porcentaje observado en las diferentes muestras de la presencia y magnitud de estos grupos indicadores se obtendrá una calificación del estado de conservación del ambiente acuático en estudio, según Roldan (1997).

El análisis de EPT se realizó mediante la utilización de estos tres grupos de macroinvertebrados que son indicadores de la calidad de agua, debido a que son más sensibles a la contaminación. En primer lugar, se coloca en una columna la clasificación de organismos, en una segunda columna la abundancia y una última columna con los EPT presentes.

Posteriormente los EPT presentes se dividen por la abundancia total, obteniendo un valor, el cual se lleva a una tabla (Tabla 32) de calificaciones de calidad de agua que va de muy buena a mala calidad (Carrera & Fierro 2001).

Tabla 32. Calidad de las Aguas según él %EPT

Clase	Índice EPT(%)	Calidad de Agua
I	75 % - 100%	Muy Buena
II	50% - 74%	Buena
III	25% - 49%	Regular
IV	0% - 24%	Mala

Fuente: Carrera & Fierro (2001)

Índices de Diversidad

Índice de diversidad de Shannon-Wiener (H')

Este índice es el más usado por ajustarse mejor a la distribución de los organismos en la naturaleza, es independiente del tamaño de muestra (Roldán, 1992). Esta expresión se acomoda a la distribución normal de las numerosas asociaciones de especies, por lo cual permite la aplicación de métodos estadísticos diversos (Magurran, 1988).

El índice de Shannon – Wiener, se usa en ecología u otras ciencias similares para medir la biodiversidad. Este índice se representa normalmente como H' y se expresa con un número positivo, que en la mayoría de los ecosistemas naturales varía entre 1 y 5. Excepcionalmente puede haber ecosistemas con valores mayores (bosques tropicales, arrecifes de coral) o menores (algunas zonas desérticas). La mayor limitante de este índice es que no tiene en cuenta la distribución de las especies en el espacio. (Tabla 33).

$$H' = \sum_{i=1}^{s} (\mathbf{p}i)(\log_2 pi)$$

Dónde: H'= Índice de Diversidad de Shannon-Wiener

S = Número de especies

pi = Proporción de la abundancia de la especie y del total de la muestra.

Tabla 33. Rangos del Índice de diversidad de Shannon-Wiener (H')

Índices	Tipo de Diversidad
0,0 - 1,5	Poca Diversidad
1,6 – 3,0	Mediana Diversidad
3,1 – 5,0	Alta Diversidad

Índice de Margalef (DMg)

Es una medida utilizada en ecología para estimar la biodiversidad de una comunidad con base a la distribución numérica de los individuos de las diferentes especies en función del número de individuos existentes en la muestra analizada, esenciales para medir el número de especies en una unidad de muestra. (Margalef 1955).

$$DMg = (S - 1) / ln N$$

S = Número de especies

N=Número Total de Individuos.

Tabla 34. Rangos del Índice de biodiversidad de Margalef (DMg)

Índices	Tipo de Biodiversidad
< 2	Baja biodiversidad (en general
	resultado de efectos antropogénicos)
2 a 5	Mediana biodiversidad
> 5	Alta biodiversidad

5.4.2. Fitoplancton Bentónico:

En cada estación de monitoreo se colectaron muestras de fitoplancton bentónico las que se obtuvieron utilizando un área de 10 x 10 cm. de sustrato duro de preferencia de color verde, para proceder al raspado de la superficie, y colocarlo en un frasco con Lugol, para su posterior envío al laboratorio.

Valor Indicador de las Microalgas Bentónicas

El uso de microalgas bentónicas para evaluar la calidad del agua es una práctica habitual en muchos países europeos, y existen abundante bibliografía sobre la capacidad bioindicadora. No obstante, la inmensa mayoría de los estudios realizados se refieren a diatomeas, y existen mucha menos información sobre los restantes grupos de algas.

Entre los índices más utilizados en el estudio de diatomeas como indicadores biológicos, que se han utilizado exitosamente en otros países están a) Índice biológico diatómico (IBD), b) Índice biológico general normalizado (IBGN), c) Índice General Diatómico (IDG), d) Índice Sapróbico (SI). El utilizado para este monitoreo es el Índice General Diatómico (IDG).

$$IDG = \frac{\sum_{j=1}^{j} A_{j} S_{j} V_{j}}{\sum_{j=1}^{n} A_{j} V_{j}}$$

Aj = Abundancia

Sj = Sensibilidad a la polución (1 a 5)

Vj = Valor indicativo de la especie (1 a 3).

Nota: Los valores del I.D.G. van de 1 a 5 en orden decreciente de los niveles de contaminación. Con esta fórmula el valor del índice que obtenemos sólo podrá variar entre 1 y 5, rango establecido para la clasificación de la calidad de las aguas.

Tabla 35. Rangos del Índice General Diatómico (IDG).

Valor	Significado
IDG>4,5	Calidad biológica óptima
4 <idg<4,5< td=""><td>Calidad normal. Polución débil</td></idg<4,5<>	Calidad normal. Polución débil
3,5 <idg<4< td=""><td>Polución moderada. Eutrofización</td></idg<4<>	Polución moderada. Eutrofización
3 <idg<3,5< td=""><td>Polución media. Eutrofización acentuada</td></idg<3,5<>	Polución media. Eutrofización acentuada
2 <idg<3< td=""><td>Desaparición de especies sensibles. Polución fuerte</td></idg<3<>	Desaparición de especies sensibles. Polución fuerte
1 <idg<2< td=""><td>Polución muy fuerte</td></idg<2<>	Polución muy fuerte
IDG=0	La población es considerada como inexistente. Polución tóxica

5.5. Técnicas Multivariadas de Análisis para la Relación entre Comunidades sobre la Población de camarón y Calidad de agua en base a Bio-indicadores.

5.5.1. Análisis de Frecuencias de Tamaños de Camarón de río a lo largo del río Cañete.

Los análisis se realizan en base a histogramas constituidos por frecuencias (o conteos) de individuos ordenados de acuerdo a una escala de tamaños con intervalos de 5 mm.

Por otro lado, se analiza la existencia de patrones de segregación del camarón a lo largo y ancho del río Cañete en relación a variables poblacionales como estado de madurez (juvenil y adulto) y sexo (hembras y macho). Para ello, se diseña una matriz de varias entradas en la cual se consideró las frecuencias de tamaños agrupadas por estaciones de muestreo, sexo, y ancho (margen izquierdo, cauce central, margen derecho).

El método utilizado para este análisis es el Análisis Log-linear de tablas de frecuencias, el cual permite el análisis de tablas de frecuencia de múltiples entradas mediante modelos de interacción de primer, segundo, tercer orden, etc., hasta encontrar el mejor modelo que ajuste a los datos observados y que incluya el menor número de interacciones necesarias para explicar la variabilidad observada de los mismos.

5.5.2. Análisis del efecto ambiental sobre la distribución de tamaños.

El método de análisis aplicado es el de Análisis Discriminante (AD) de tipo Forward, es decir se irán incorporando paso a paso solo aquellas variables que tengan un efecto significativo discriminatorio sobre los grupos analizados, bajo las consideraciones de un nivel de significación de entrada (F-to enter) igual 1 y de remoción (F to remove) igual a 0.

Las variables ambientales consideradas en el AD: Temperatura ambiental (°C), Temperatura del agua (°C), pH, Oxígeno disuelto (mg/L), Dureza (mg/L), Transparencia (NTU), Caudal (m³/s), CO₂ y Nitritos.

5.5.3. Análisis de Calidad de Agua en base a Indicadores Biológicos.

Se utilizarán los métodos de Análisis de Componentes Principales (ACP) para analizar y caracterizar las estaciones de muestreo en relación a los parámetros fisicoquímicos. Luego se utilizará el método de Análisis de Correspondencia (AC) para el análisis de la abundancia de los indicadores biológicos (macroinvertebrados bentónicos y perifiton) y la relación con las estaciones de muestreo. Para finalizar, se empleará el Análisis de Correspondencia Canónica (ACC) para evaluar la relación entre los variables ambientales, la abundancia de los indicadores biológicos y las estaciones de muestreo. Las matrices son estandarizadas con la función log (x+1). Las variables ambientales consideradas en el presente análisis serán: temperatura ambiental (°C), temperatura del agua (°C), pH, oxigeno, dureza, transparencia, velocidad, nitritos, CO2 y caudal.

5.5.4. Análisis del Efecto Ambiental sobre el Camarón de río.

El método emplea la exploración de las relaciones entre la abundancia relativa (ind/m²) del camarón de río, los parámetros fisicoquímicos (T° del agua, oxígeno disuelto, dureza, nitritos, pH, CO₂, transparencia, caudal y velocidad) y los indicadores biológicos (macroinvertebrados bentónicos y perifiton) para cada una de las estaciones evaluadas en el río Cañete, siendo denominado mediante el Análisis de Correspondencia Canónica (CCA).

Previo a los análisis se realizarán ajustes en la base de datos que se estandarizarán mediante la matriz con la función log(x+1).

5.6. Personal de Monitoreo

CELEPSA cuenta con el personal capacitado y experimentado en el manejo de la especie por más de 15 años, para realizar la recolección de muestras, así como el análisis interpretativo de los resultados con el medio ambiente, producto de las actividades que se realizan en la ejecución del Proyecto.

El presente Informe de monitoreo biológico de camarón de río, se ha logrado mediante un Coordinador del Monitoreo que tiene a su mando al personal capacitado para realizar la recolección de muestras y está integrado de acuerdo a un esquema de trabajo.

Figura 4. Personal colaborador en el monitoreo - Octubre 2019.

VI. RESULTADOS DE LA EVALUACIÓN DE LAS ESTACIONES DE MONITOREO BIOLÓGICO

El río Cañete es uno de los ríos más importantes de la costa central peruana, con una longitud total aproximada de 209 kilómetros. El río Cañete presenta un caudal anual considerable y es el hábitat de importantes recursos hidrobiológicos que son utilizados por los pobladores. Entre estos recursos destacan la *Oncorhynchus mykiss* "trucha", *Orestia sp.* "Chalguita", el *Basilichthys archaeus* "pejerrey" y el *Cryphiops caementarius* "camarón de río".

La primera y segunda especie se distribuye en la cuenca alta, mientras que las otras son más abundantes en la cuenca media - baja. La distribución de estas especies en zonas definidas de la cuenca, responde a diversos factores, entre los que se encuentran la geomorfología del terreno y las interacciones entre parámetros físicos, químicos y biológicos del agua.

Las comunidades de camarón del río (*Cryphiops caementarius*) Cañete tienen importancia biológica, porque su presencia suele ser indicador de la existencia de condiciones favorables, en términos bioecológicos, para su establecimiento, mientras las condiciones físicas y químicas de estos ambientes acuáticos estén dentro de los rangos habituales para ríos (aguas con buena oxigenación y pH relativamente neutro-básico) estas especies tendrán las condiciones adecuadas para continuar con sus ciclos biológicos. Por otro lado, su importancia económica y cultural hacen de él, el recurso de pesca económica en el sur chico.

6.1. Evaluación del Camarón de río (Cryphiops caemenatrius)

Cabe destacar que los resultados serán comparados principalmente con monitoreos anteriores efectuados en el mes de octubre por observar que la especie presenta determinadas características en periodos similares.

6.1.1. Tamaño de muestra

El muestreo aleatorio es una técnica para obtener muestras representativas de la población, que asegure una probabilidad de los elementos que pertenezcan a la población en dicho momento. Se trabajó a un nivel de significancia del 95% en las estaciones de muestreo, obteniéndose los siguientes resultados en dicho monitoreo. (Tabla 36).

Tabla 36. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de Significancia del 95%

ESTACIONES	N	95%	ESTACIONES	N	95%
Pampilla	3000	71	Machuranga	34	23
Lucumo	895	68	San Juanito	11	10
Fortaleza	592	65	Piedra Coca	174	52
Alto Hungara	1021	68	La Tolva	15	13
Concon	751	67	Tacuasimonte	33	23
Caltopa	865	67	Huayllampi	66	35
Socsi	617	65	Canchan	4	4
Paullo	562	65	Escarilla	29	21
Lunahuana	254	57	Chavin	117	45
Catapalla	209	54	Chicchicay	2	2
Jacaya	189	53	Capillucas	2	2
Pacaran	26	19	Putinza	0	0
Huagil	27	20	Calachota	0	0
Zuñiga	13	11			

Elaborado: Celepsa - Octubre 2019

6.1.2. Proporción de Sexos

Para el presente año los machos predominaron desde el estrato 0 hasta el 1 100 m.s.n.m., mientras que las hembras de los 0 a los 1 700; encontrándose finalmente en una proporción de 0,85:1, con predominio de las hembras, es decir las machos conforman el 45,87% de la población y las hembras el 54,13%, características típicas de la distribución sexual de la especie en el presente periodo (Tabla 37).

En todos los estratos hay un incremento en la distribución de los machos con respecto al mes de octubre 2019.

Tabla 37. Número de Machos y Hembras, Porcentaje (%) y Proporción Sexual por estrato altitudinal

ESTRATO	PORCE	NTAJE %	PROPORCION SEXUAL			
	MACHOS	HEMBRAS	MACHOS	HEMBRAS		
00-100	44,01	55,99	0,79	1		
100-300	46,74	53,26	0,88	1		
300-500	46,68	53,32	0,88	1		
500-700	67,35	32,65	2,06	1		
700-900	68,57	31,43	2,18	1		
900-1100	22,84	77,16	0,30	1		
1100-1300	0,00	100,00	0,00	1		
1300-1500	7,91	92,09	0,09	1		
1500-1700	0,00	100,00	0,00	1		
TOTAL	45,87	54,13	0,85	1		

En la distribución de machos y hembras para octubre 2019, comparándolo con octubre 2018 podemos observar lo siguiente:

- 00 100 m.s.n.m., en machos existe una disminución de 2,90% y en hembras un incremento del 4,73%.
- 100 300 m.s.n.m., en machos existe un incremento del 4,70% y en hembras un incremento del 3,45%.
- 300 500 m.s.n.m., en machos existe un incremento del 1,16% y en hembras un incremento del 1,97%.
- 500 700 m.s.n.m., en machos existe una disminución de 8,83% y en hembras una disminución de 18,31%.
- 700-900 m.s.n.m., en machos existe una disminución de 22,61% y en hembras una disminución de 4.16%.
- 900-1 100 m.s.n.m., en machos existe una disminución de 54,94% y en hembras un incremento de 58,41%.
- 1 100 1 300 m.s.n.m., en machos existe una disminución de 33,33% y en hembras no hubo disminución ni incremento.
- 1 300 1 500 m.s.n.m., en machos existe una disminución de 7,28% y en hembras un incremento de 27,64%.
- 1 500 1 700 m.s.n.m., en machos existe una disminución de 100% y en hembras no hubo disminución ni incremento.

La nueva distribución por estratos de los machos y hembras en el río Cañete, se observa que la población de hembras es mayor a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico (as fechas de repoblamiento fueron: 25,26 y 27 de junio y luego 1, 2 y 3 de julio), debido a que dicho sector ha mejorado su habitabilidad para el crecimiento de las hembras, razón por la que ellas son las que sobreviven y se desarrollan óptimamente en dichos sectores (Tabla 38).

Tabla 38. Porcentaje de machos y hembras desde octubre 2007 a octubre 2019

N/ A~	PORCE	NTAJE %
Mes - Año	MACHOS	HEMBRAS
Oct-07	56,32	43,68
Oct-08	50,89	49.11
Oct-09	42,58	57,42
Oct-10	49,23	50,77
Oct-11	50,60	49,40
Oct-12	45,62	54,38
Oct-13	47,30	52,70
Oct-14	46,37	53,63
Oct-15	45,03	54,97
Oct-16	47,68	52,32
Oct-17	48,76	51,24
Oct-18	47,65	52,35
Oct-19	45,87	54,13

6.1.2. Madurez Gonadal

La determinación de la proporción de sexos y la serie de cambios en la fase de madurez que ocurren durante el año son de enorme importancia para adquirir un conocimiento completo de la biología de una población explotada. En el caso de algunas especies puede ser necesario mantener de forma rutinaria programas para analizar la proporción de sexos y las fases de madurez de los individuos.

Para octubre 2019, se observa lo siguiente:

Machos

- El 40,28% se encuentran en estadio I (Inmaduro)
- El **56,25**% se encuentran en estadio II (Inactivos o reposo)
- El 2,93% se encuentra en estadio III (Intermedio)
- El 0,53% se encuentra en estadio IV (Avanzado)

Hembras

- El **39,01**% se encuentra en estadio I (Inmaduro)
- El 46,84% se encuentran en estadio II (Inactivos o reposo))
- El 7,28% se encuentra en estadio III (Intermedio)
- El **6,86**% se encuentra en estadio IV (Avanzado)

Indicándonos, para los machos, que el mayor porcentaje de la población se encuentra en **estadio Inactivo o de Reposo** y para las hembras, el mayor porcentaje de la población se encuentra en **estadio Inactivo o de Reposo.** Por lo tanto, para esta etapa de evaluación los machos y hembras representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan. Estos serán los primeros productores reclutas de primavera. (Tabla 39).

Tabla 39. Madurez gonadal de machos y hembras por estratos altitudinales – octubre 2019

	MACHOS							HEMBRAS					
ESTRATO	TO ESTADIO GONADAL						ES	STADIO G	ONADA	L			
	0	I	II	III	IV	V	0	I	II	III	IV	V	
00-100	0	112493	127967	4878	1104	0	0	153006	128172	13239	19164	0	
100-300	0	126197	200686	8789	1787	0	0	171099	169359	18883	25196	0	
300-500	0	78231	167403	9726	1788	0	0	93777	156906	21911	21172	0	
500-700	0	60672	23861	1942	214	0	0	23276	14776	2202	1777	0	
700-900	0	7126	7522	829	83	0	0	752	4892	891	597	0	
900-1100	0	1851	4723	1286	41	0	0	1383	17113	5571	2625	0	
1100-1300	0	653	6913	614	78	0	0	1505	14735	5484	2332	0	
1300-1500	0	191	2265	124	13	0	0	1053	15978	9767	3377	0	
1500-1700	0	0	0	0	0	0	0	248	8630	3087	1392	0	
TOTAL	0	387414	541339	28187	5108	0	0	446099	530561	81035	77632	0	
TOTAL %	0,00	40,27	56,27	2,93	0,53	0,00	0,00	39,29	46,73	7,14	6,84	0,00	

Al comparar los estadios gonadales de machos y hembras con octubre 2018 (Tabla 40 y Figura 5):

Tabla 40. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de octubre del 2007 a octubre 2019

			% MA	CHOS			% HEMBRAS						
Mes - Año		ES	TADIO	GONAD	AL	*		ESTADIO GONADAL					
	0	I	II	III	IV	V	0	I	II	III	IV	V	
Oct-07	0,00	15,42	11,94	61,18	11,46	0,00	0,00	7,85	1,02	38,21	9,64	43,28	
Oct-08	0,00	18,46	47,40	32,27	1,86	0,00	0,00	11,90	70,55	15,96	1,60	0,00	
Oct-09	2,51	8,32	70,49	16,50	2,19	0,00	0,75	7,75	65,98	13,49	12,02	0,00	
Oct-10	0,00	33,39	57,76	8,63	0,22	0,00	0,04	53,49	32,61	1,50	10,06	2,29	
Oct-11	0,00	48,16	39,78	9,95	2,11	0,00	0,00	62,67	24,91	1,47	10,94	0,00	
Oct-12	0,00	33,31	62,52	4,17	0,00	0,00	0,00	27,41	53,04	7,93	11,63	0,00	
Oct-13	0,00	30,64	59,42	9,43	0,51	0,00	0,00	36,20	49,25	5,25	9,30	0,00	
Oct-14	0,00	61,11	36,51	2,38	0,00	0,00	0,00	71,63	19,89	5,46	2,96	0,06	
Oct-15	5,32	50,18	38,68	5,00	0,82	0,00	5,72	58,07	18,21	7,51	10,48	0,00	
Oct-16	0,00	46,95	51,02	1,93	0,10	0,00	0,00	49,79	45,04	2,97	2,20	0,00	
Oct-17	0,00	36,52	61,35	2,08	0,05	0,00	0,00	45,94	49,03	0,84	4,19	0,00	
Oct-18	0,00	43,73	53,22	3,05	0,00	0,00	0,00	56,51	38,68	4,80	0,00	0,00	
Oct-19	0,00	40,28	56,25	2,93	0,53	0,00	0,00	39,01	46,84	7,28	6,86	0,00	

Elaborado: Celepsa - Octubre 2019

Se observa lo siguiente:

- Estadio I : Disminución de machos en un 3,45% y en hembras una disminución 17,50%.
- Estadio II: Incremento de machos en un 3,03% y en hembras un incremento de 8,16%.
- Estadio III: Disminución de machos en un 0,12% y en hembras un incremento de 2,48%.
- Estadio IV: Incremento de machos en un 0,53% y en hembras un incremento de 6,86%.

Estos primeros resultados nos indican que las actividades de descolmatación y limpieza del lecho del rio Cañete en la zona baja durante el segundo trimestre del año, ha generado no solo una disminución del recurso si no una brecha en el desarrollo de su población en general, habiendo

afectado fuertemente a la población pequeña y en un futuro un periodo de disponibilidad de recurso para la comercialización.

Figura 5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos anuales

ESTADIO GONADAL

HEMBRAS

6.1.3. Composición de Tallas

ESTADIO GONADAL

MACHOS

Se evaluó que el 26,94% de la abundancia y el 59,88% de biomasa estaría disponible de ser capturada en los próximos meses, considerando la finalización de época de veda.

Comparando octubre 2018 a octubre 2019, la biomasa disminuyo en un 3,87% y la Abundancia aumento en un 2,60%, lo que nos indica una relación inversa entre la biomasa y abundancia para este período.

Entre la biomasa comercial destacan las tallas 74,5 a 104,5 mm, representando el 53,28% (Tabla 41).

INTERNAL O	. CEDIA C	•	BI	OMASA		ABUNDANCIA				
INTERVALO	MEDIAS	Kg	%	Kg	%	N °Ind.	%	Nº Ind.	%	
20-29	24,5	3.94	0.03			9862.44	0.47			
30-39	34,5	137.46	0.90			129505.65	6.17			
40-49	44,5	743.21	4.88	6113.70	40.12	383131.25	18.27	1532341.98	73.06	
50-59	54,5	1961.59	12.87			527995.50	25.17			
60-69	64,5	3271.43	21.47			481847.13	22.97			
70-79	74,5	3562.24	23.38			322725.44	15.39			
80-89	84,5	2182.23	14.32			135564.78	6.46			
90-99	94.5	1479.12	9.71			64542.00	3.08			

Tabla 41. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud

100-109	104,5	895.96	5.88	9027.75	59.88	23937.76	1.14	565033.56	26.94
110-119	114,5	326.57	2.14			7893.20	0.38		
120-129	124,5	364.64	2.39			6581.11	0.31		
130-139	134,5	195.68	1.28			2699.35	0.13		
140-149	144,5	21.31	0.14			235.74	0.01		
150-159	154,5	93.23	0.61			854.18	0.04		
160-169	164,5	0,00	0,00			0.00	0.00		
	-	15,238.63	100.00	0		2,097,376	100.00)	

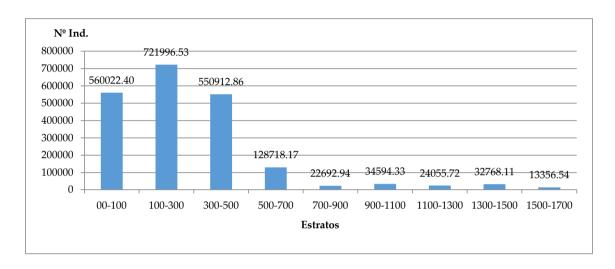


Figura 6. Distribución Poblacional por estratos – octubre 2019

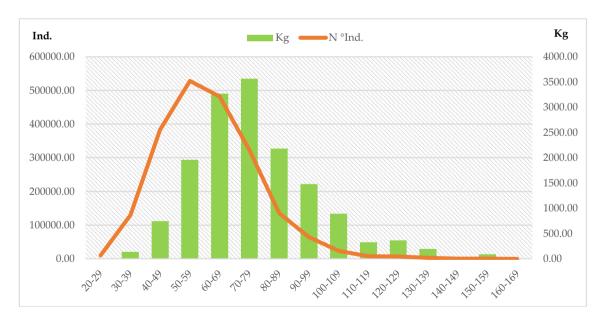


Figura 7. Biomasa y Abundancia tallas - octubre 2019

6.1.4. Abundancia y Biomasa

La abundancia absoluta estimada para toda el área evaluada es de **2 097 376 individuos**, con una biomasa absoluta estimada de **15 201 Kg**, comparándolo con los resultados obtenidos en octubre 2018, hay un incremento en la biomasa de 6 050 kg. y un incremento en la abundancia de 791 094 individuos (Figuras 8 y 9).

En el presente monitoreo se obtuvo una **abundancia relativa de 0,80 ind/m²** y una **biomasa relativa de 5,81 g/m²** (Tabla 41). En relación a octubre 2018 (0,50 ind/m² y 3,47 g/m²), observamos un incremento de 0,30 ind/m² con respecto a la abundancia relativa y de 2,34 g/m² con respecto a la biomasa relativa.

Abundancia Relativa

- La mayor abundancia relativa se presentó en el estrato 0 100 m.s.n.m. (Pampilla, Lúcumo y Fortaleza) con 3,22 ind/m².
- Y como segundo más abundante el estrato de 100 300 m.s.n.m. (A. Húngara, Concón y Caltopa) con 1,90 ind/m².

Biomasa Relativa

- La mayor biomasa relativa se presentó en el estrato 00 100 m.s.n.m. (Pampilla, Lúcumo y Fortaleza) con 16,52 g/m².
- Y seguido como segundo más abundante el estrato de 100 300 m.s.n.m. (A. Húngara, Concón y Caltopa) con 11,97 g/m² (Tabla 42).

Evaluando los resultados totales del presente monitoreo octubre 2019 y comparándolo con octubre 2018 nos encontramos con una respuesta positiva del recurso gracias el desarrollo del Programa de Sostenibilidad del camarón, los trabajos de control y vigilancia, así como de extracción responsable por parte de los camaroneros y los repoblamientos del Caudal Ecológico para ayudar a su rápida distribución, permitieron la recuperación gradual de la población para este monitoreo.

El Programa de sostenibilidad que se modifica según la necesidad ha demostrado nuevamente ser clave para mitigar impactos ya sea por actividad antrópica o natural en el tiempo, por lo que se espera que los efectos del presente año 2019, sean superados y se logren un incremento mayor para el año 2020.

Respecto al sector de caudal ecológico, este mantiene áreas habitables para el camarón de rio, por lo que la implementación del repoblamiento en este año, permitirá el crecimiento esperado de los juveniles, así como de su distribución.

Tabla 42. Abundancia y Biomasa por estrato altitudinal

				ABUNI	DANCIA	BIOMASA		
Sectores Evaluados	Altitud (m.s.n.m.)	Estaciones de Monitoreo	Área (m²)	Relativa	Absoluta	Relativa	Absoluta	
	(III.S.II.III.)	Monitoreo		(Ind/m ²)	(N)	(g/m^2)	(kg)	
		Pampilla	173 875,00	3,22	560 022	16,52	2 873,25	
BOCA DE RIO	00 -100	Lucumo						
		Fortaleza						
	•	A.Hungara	379 166,67	1,90	721 997	11,97	4 538,47	
ALTO HUNGARA CALTOPA	100-300	Concon						
		Caltopa						
		Socsi	529 229,17	1,04	550 913	9,22	4 877,59	
SOCSI-LUNAHUANA	300-500	Paullo						
		Lunahuana						
	•	Catapalla	427 083,33	0,30	128 718	1,98	844,32	
CATAPALLA - PACARAN	500-700	Jacayita						
		Pacaran						
		Huagil	289 833,33	0,08	22 693	1,03	298,80	
HUAGIL - MACHURANGA	700-900	Zuñiga						
		Machuramga						
		San Juanito	189 583,33	0,18	34 594	3,26	617,39	
SAN JUANITO - LA TOLVA	900-1100	Piedra Cocca						
		La Tolva						
		Huallampi	92 958,33	0,35	32 314	4,68	434,67	
HUAYLLAMPI - CANCHAN	1100-1300	Tacuasimonte						
		Canchan						
		Escarilla	140 916,67	0,23	32 768	4,07	572,93	
ESCARILLA-CHICCHICAY	1300-1500	Chavin						
		Chicchicay		•				
		Capillucas	400 708,33	0,03	13 357	0,45	181,22	
CAPILLUCAS - CALACHOTA	1500-1700	Putinza						
		Calachota						
TOTAL			2 623 354	0,80	2 097 376	5,81	15 239	

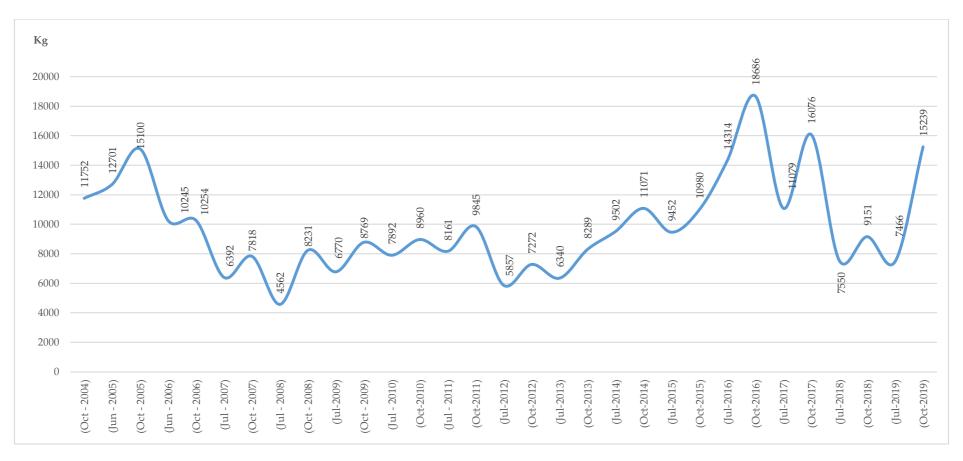


Figura 8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a octubre 2019

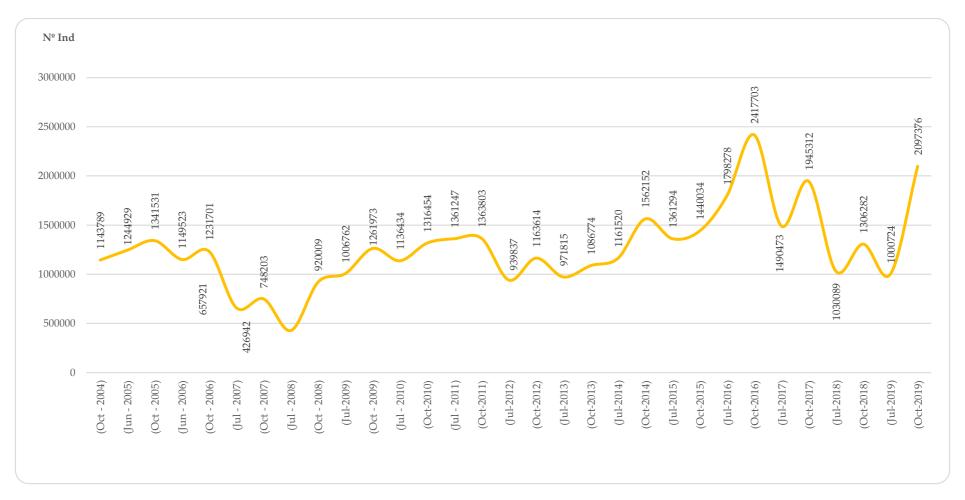


Figura 9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a octubre 2019.

VII. RESULTADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LAS ESTACIONES DE MONITOREO.

Los parámetros físico-químicos evaluados en las estaciones de monitoreo fueron los siguientes: temperatura, pH, oxígeno disuelto, dureza, CO₂ y Nitritos. Los resultados registrados en cada estación de monitoreo se presentan en el Tabla 43.

Tabla 43. Valores de los parámetros físico químicos Julio 2019

Altitud (m.s.n.m.)	Estaciones	T. Amb	T. Agua °C	Nitrito	рН	Oxígeno (mg/L)	CO ₂ (mg/L)	Dureza (mg/L)	Turbidez (NTU)
•	Pampilla	25,5	23,1	0	8,44	9,0	10	239,40	0,90
00 -100	Lucumo	25,1	26,8	0	8,19	9,0	10	256,50	1,08
	Fortaleza	24,6	21,7	0	8,29	8,0	5	256,50	1,06
	Alto Hungara	29,4	26,0	0	8,48	9,0	10	239,40	0,88
100-300	Concon	24,9	24,5	0	8,45	9,0	10	239,40	1,25
	Caltopa	25,3	21,8	0	8,44	8,0	10	222,30	1,71
	Socsi	28,1	23,2	0	8,42	8,0	15	256,50	1,61
300-500	Paullo	27,0	23,2	0	8,37	8,0	15	222,30	1,69
	Lunahuana	23,7	22,1	0	8,33	8,0	10	222,30	1,72
	Catapalla	23,7	22,2	0	8,32	8,8	10	222,30	1,52
500-700	Jacayita	25,2	21,0	0	8,43	8,4	10	239,40	1,87
	Pacaran	28,6	19,6	0	8,41	9,9	10	256,50	1,21
	Huagil	23,4	19,0	0	8,42	9,4	5	222,30	1,05
700-900	Zuñiga	20,2	18,8	0	8,50	8,1	10	239,40	1,19
	Machuranga	25,1	25,8	0	9,50	8,1	10,3	239,40	1,26
	San Juanito	24,4	23,5	0	8,60	9,8	10	205,20	1,14
900-1100	Piedra Coca	29,2	24,4	0	8,10	10,8	5	205,20	1,32
	La Tolva	25,2	21,7	0	8,40	9,9	8	205,20	1,07
	Huallampi	23,6	20,4	0	8,30	9,9	5	205,20	1,07
1100-1300	Tacuasimonte	33,5	24,6	0	8,28	9,4	10	205,20	1,21
	Canchan	30,4	21,2	0	8,30	8,7	10	205,20	1,27
	Escarilla	28,4	21,5	0	8,20	8,2	10	188,10	1,18
1300-1500	Puente Chavín	24,9	20,1	0	8,54	9,1	15	239,40	1,18
	Chichicay	27,0	22,0	0	8,57	8,8	5	239,40	1,09
	Capillucas	27,1	20,5	0	8,59	9,3	5	222,30	1,39
1500-1700	Puente Putinza	28,7	18,8	0	8,56	9,8	10	239,40	1,49
	Calachota	27,5	16,8	0	8,50	9,8	15	239,40	1,09

Elaborado: Celepsa - Octubre 2019

7.1. Temperatura (°C):

La Temperatura es un factor abiótico que regula procesos vitales para los organismos vivos, así como también afecta las propiedades químicas y físicas de otros factores abióticos en un ecosistema.

La temperatura rige algunos parámetros físicos, químicos y biológicos, tales como la evaporación y la solubilidad de los gases. Dentro de los biológicos están los procesos metabólicos como la respiración, nutrición, actividad de las bacterias en la descomposición de la materia orgánica, etc. de ahí la necesidad de conocer y evaluar los cambios de temperatura del agua. Welch (1952).

Es uno de los parámetros físicos más importantes en el agua, pues por lo general influye en el retardo o aceleración de la actividad biológica, la absorción de oxígeno, la precipitación de compuestos, la formación de depósitos, la desinfección y los procesos de mezcla, floculación, sedimentación y filtración. Múltiples factores, principalmente ambientales, pueden hacer que la temperatura del agua varíe continuamente.

En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo osciló entre un máximo en 26,80 °C y como mínimo 16,80 °C. (Figura 10 y 11).

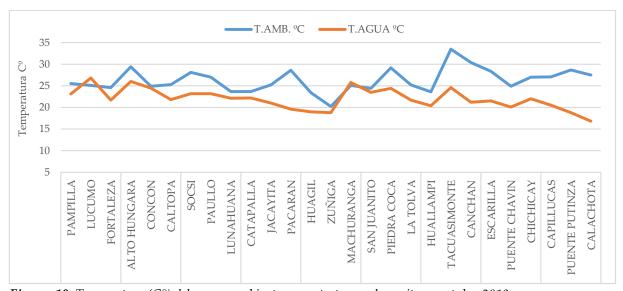


Figura 10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo octubre 2019

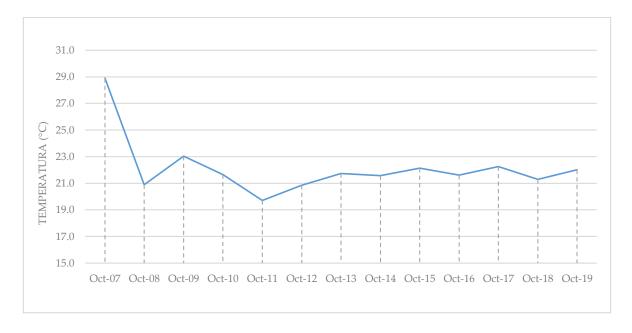


Figura 11. Comparativo de registro de temperatura (C°) del agua, desde octubre 2007 a octubre 2019

7.2. pH (UpH):

Este valor, expresa la concentración de iones hidrógeno en el agua y es la expresión de las características ácidas o básicas que esta presenta. Su escala varía entre 0 y 14, siendo el punto 7, el denominado "neutro". Por debajo de 7, los valores serán ácidos y por encima de dicho valor, básicos. En su gran mayoría, el pH de las aguas se equilibra por medio de un sistema de carbonato-bicarbonato y abarca valores que van desde 5,0 hasta 9,0; existiendo algunas excepciones. Para la mayor parte de los animales acuáticos, el valor óptimo de pH en referencia a su crecimiento y salud, se sitúa en el rango de 6,5 a 9,0. La exposición a un pH extremo puede ser estresante o letal. El pH controla una gran variedad de reacciones de equilibrio (por ejemplo, las reacciones de amoníaco y nitritos e influye también en la toxicidad de metales como el cobre, cadmio, zinc y aluminio).

Respecto al parámetro pH las concentraciones registradas oscilaron como máximo en **9,50 UpH** y como mínimo en **8,10 UpH** (Figura 12 y 13). De las estaciones en el presente monitoreo, se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6.5 a 8.5).

El pH de un cuerpo de agua puede variar a lo largo de un amplio rango de valores, dependiendo de factores del ambiente acuático:

Intrínsecos (Estratificación y mezcla del sistema acuático; Evaporación; La intensidad de procesos biológicos tales como fotosíntesis, respiración y actividades de descomposición de materia orgánica).

Extrínsecos (Composición de: suelos adyacentes, depósitos superficiales y lecho rocoso; Fuentes de contaminación: drenaje ácido de minas, precipitación ácida; Presión parcial de CO₂ en la atmósfera y la temperatura).

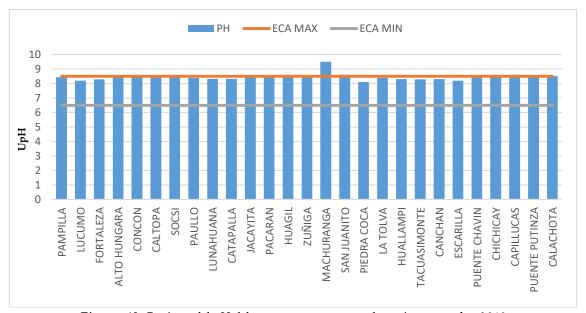


Figura 12. Registro del pH del agua, por estratos en el monitoreo octubre 2019

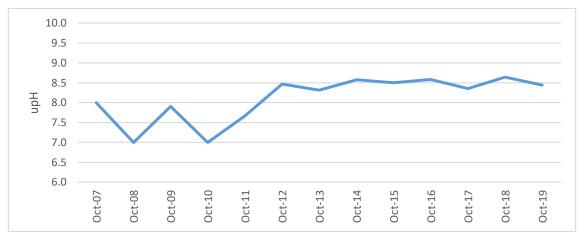


Figura 13. Comparativo de registro de UpH del agua, desde octubre 2007 a octubre 2019

7.3. Oxígeno (mg/L):

Es la variable química considerada crítica en el cultivo de peces y por lo tanto la más importante y sus concentraciones requieren de un monitoreo continuo en acuicultura en varios tipos de sistemas. El oxígeno disuelto (OD) en el agua se encuentra relacionado íntimamente a la temperatura (según la ley de gases) de tal forma que, a mayor temperatura, este gas será menor y a menor temperatura, su concentración será mayor. La presión barométrica y la altura también influyen directamente sobre su concentración.

El nivel de oxígeno disuelto presente en un sistema de acuicultura es el parámetro más importante en la calidad del agua. Si no existe una adecuada concentración de oxígeno disuelto los organismos pueden ser vulnerables a enfermedades y parásitos, o morir por hipoxia (Salazar, 2001).

Respecto al Oxígeno Disuelto promedio (Figura 14 y 15), las concentraciones registradas en la presente evaluación oscilaron en un máximo de 10,82 mg/L y la mínima en 8,00 mg/L, encontrándose a los valores del presente monitoreo normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥5).

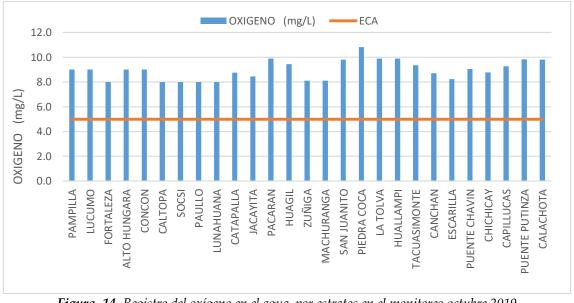


Figura 14. Registro del oxígeno en el agua, por estratos en el monitoreo octubre 2019

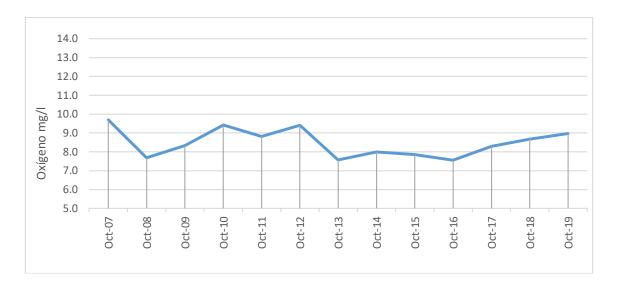


Figura 15. Comparativo de registro de oxígeno (mg/L) del agua, desde octubre 2007 a octubre 2019

7.4. Dureza (mg/L):

La dureza total o general se define como la concentración de iones, básicamente calcio y magnesio y se expresa como mg/L de carbonato de calcio equivalente (Rodríguez & Anzola, 2001).

Respecto a la dureza promedio, las concentraciones registradas en la presente evaluación oscilaron en un máximo de 256,50 mg/L y la mínima en 188,10 mg/L, encontrándose a los valores del presente monitoreo en una clasificación de agua Dura (Figura 16 y 17). Los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio mientras que en aguas muy blandas suelen aparecer deficiencias en minerales y se advierte un crecimiento pobre.

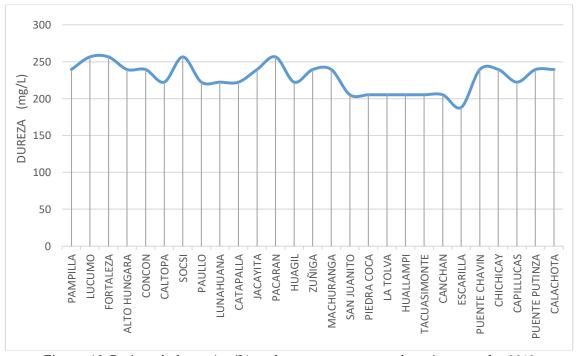


Figura 16. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo octubre 2019

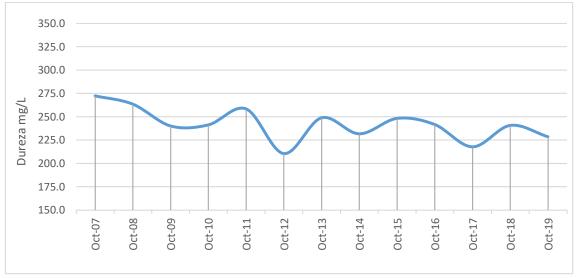


Figura 17. Comparativo de registro de dureza (mg/L) del agua, desde octubre 2007 a octubre 2019

7.5. CO_2 (mg/L):

El anhídrido carbónico es un gas muy soluble en agua, aunque su concentración pura sea baja. La mayor parte de su producción en un sistema acuícola, proviene de la respiración de los propios animales en cultivo y de la descomposición de la materia orgánica que existe en el sistema. Su medida se efectúa químicamente en laboratorio.

La acumulación de CO₂ en el agua indica muchas veces, una cesación del proceso fotosintético en el agua, en estas circunstancias, no habrá producción de oxígeno por el fitoplancton por ende no habrá oxígeno para los organismos en el agua.

Una alta concentración de CO₂ son comunes cuando existe una floración exagerada de algas en el medio acuático, si ocurre una mortalidad de estas algas/plantas es provocado por su alta concentración en el agua y por una deficiencia de oxígeno por fotosíntesis y liberación de este CO₂ por el proceso de descomposición de las algas/plantas muertas.

El CO2 promedio (Figura 18 y 19), osciló en la presente evaluación con un máximo de 15 mg/L y la mínima con 5 mg/L.

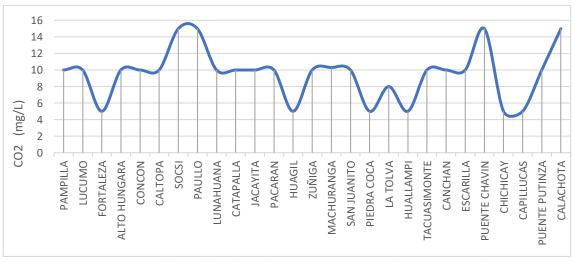


Figura 18. Registro de CO2 (mg/L) en el agua, por estratos en el monitoreo octubre 2019

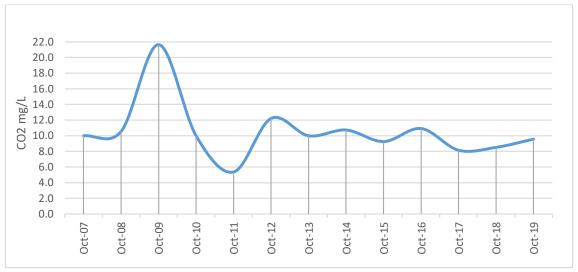


Figura 19. Comparativo de registro de CO2 (mg/L) del agua, desde octubre 2007 a octubre 2019

7.6. Turbidez (NTU):

Al propagarse en un medio acuoso, la luz se extingue por fenómenos de absorción y dispersión. Ya el agua pura interacciona con la luz y contribuye a su extinción, pero si consideramos además las sustancias que se encuentren disueltas y las partículas en suspensión, podemos imaginarnos que los sistemas acuáticos presentaran una zona iluminada en su superficie, tornándose cada vez más oscura en función del aumento de la profundidad, el color y turbidez del agua. Aguas con aspecto barroso (achocolatado) obtiene esa coloración por la suspensión de sedimentos por acción del viento, corriente, o por aportes externos. Entre los últimos, la erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas.

Para el presente monitoreo la Turbidez osciló entre **1,87 NTU** como máximo y **0,88 NTU** como mínimo. (Figura 20).

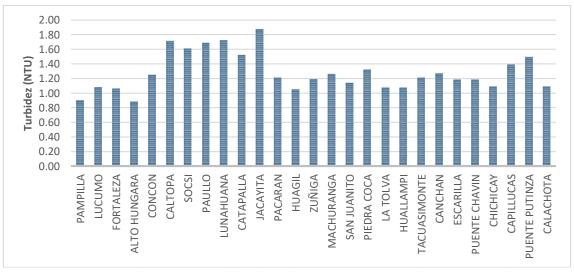


Figura 20. Registro de transparencia (NTU) en el agua, por estratos en el monitoreo octubre 2019

VIII. RESULTADOS DE LA EVALUACIÓN DEL PLANCTON

El plancton es muy importante ya que constituye la unidad básica de producción de materia orgánica en los ecosistemas acuáticos. Así, los componentes vegetales del plancton son capaces de acumular energía lumínica solar en forma de componentes químicos energéticos a merced de la fotosíntesis, además el oxígeno producido representa una parte sustancial para los organismos acuáticos. Por lo que las zonas de mayor riqueza pesquera en el mundo son las zonas donde el plancton es abundante.

8.1. Muestreo Biológico

Las muestras biológicas obtenidos fueron empleando redes de nylon, para fitoplancton y zooplancton.

8.2. Fitoplancton

Las especies predominantes de fitoplancton en todos los puntos de muestreo pertenecen a la División Bacillariophyta (comúnmente llamadas diatomeas), presentando 2 708 cel/L (83,58%), el segundo grupo dominante fueron las Chlorophytas, con 459 cel/L (14,17 %) y el tercer grupo fueron las Cyanobacterias con 73 cel/L (2,25 %) como se puede observar en la Figura 21.

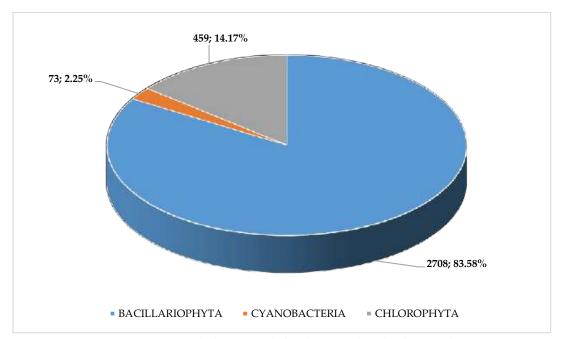
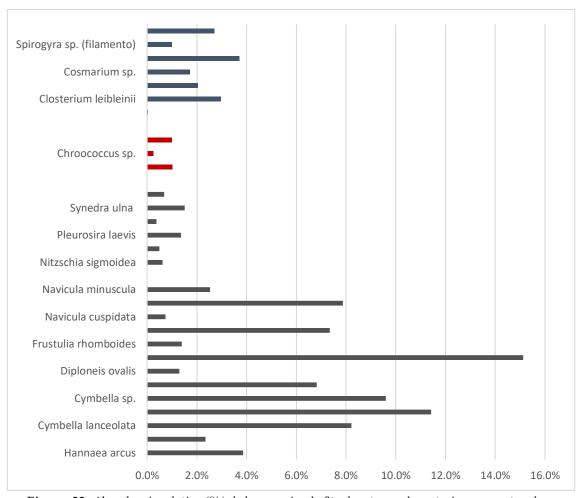



Figura 21. Porcentaje de divisiones de fitoplancton identificado – octubre 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 22), el phyllum con mayor presencia es Bacillariophytas, siendo *Fragillaria capucina* (15,10%) especie con mayor abundancia relativa, seguida por *Cymbella affinis* (11,40%).

Figura 22. Abundancia relativa (%) de las especies de fitoplancton en las estaciones muestreadas - octubre 2019

8.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 30 especies de algas pertenecientes a tres divisiones: Bacillariophyta, Cyanobacterias y Chlorophyta. La abundancia total registrada en las 18 estaciones de muestreo fue de 3 240 células/L, teniendo mayor importancia en riqueza de especies las diatomeas (Figura 23).

Según la composición taxonómica encontrada, la mayor presencia de la división Bacillariophytas es considerada normal dentro de los ecosistemas acuáticos (Acleto y Zuñiga, 1998). Las algas de la división Chlorophyta son también importantes en riqueza y abundancia, lo cual refleja una buena productividad primaria, ya que estas algas en general están adaptadas a diversos ambientes y a diversas condiciones ambientales, se las encuentra en casi todos los cuerpos de aguas continentales.

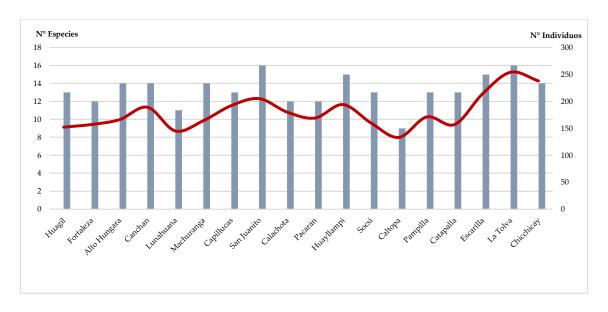


Figura 23. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - octubre 2019

División Bacillariophyta

La división incluye a las diatomeas, que son organismos unicelulares aislados en colonias, tienen una pared celular de sílice, producen su propio alimento gracias a la presencia de clofilas a, c y carotenoides o son heterotróficos por carecer de los pigmentos fotosintéticos (Lee 1999; Raven et al. 1999). Se calcula que existen aproximadamente 100 000 *spp*. (Raven et al. 1999). Las diatomeas son uno de los componentes del plancton y constituyen uno de los principales elementos de la flora marina de aguas abiertas y es un componente importante de la flora de ambiente de agua dulce (Lee 1999). Este grupo es el responsable del 25% de la producción primaria del mar y 75% de agua dulce. (Gallardo 1998).

Esta división para el presente monitoreo presentó **20 especies de diatomeas** (Bacillariophytas), siendo las más representativas *Fragillaria capucina* con 490 cel/L y *Cymbella affinis* con 370 cel/L (Figura 24).

Figura 24. Cymbella affinis

División Chlorophytas

Esta división está constituida por algas verdes y es considerada como la más cercanamente relacionada con el reino Plantae. Las algas verdes son uni o pluricelulares, son autótrofas y sus pigmentos fotosintéticos son las clorofilasas a, b y los carotenoides. La pared celular está primordialmente constituida por celulosa (Lee 1999; Raven et al. 1999). El 90% de las especies son de agua dulce y el 10% restante consta de especies marinas (Smith 1955 en Lee 1999) y muchas de ellas forman simbiosis con hongos dando origen a los líquenes. Se calcula que existen aproximadamente 17 000 spp. (Raven et al. 1999).

En esta división se presentaron **07 especies**, siendo las más representativas *Scenedesmus sp.* (*cenobio*) con 120 cel/L y *Closterium leibleinii* con 96 cel/L (Figura 25).

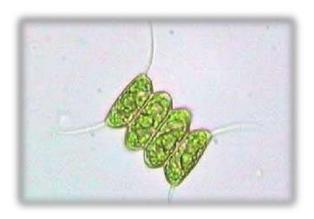


Figura 25. Scenedesmus sp. (cenobio)

División Cyanophytas

Las cianofíceas, también llamadas cianófitas o cianobacterias, son un filo de móneras microorganismos procarióticos, puesto que carecen de membrana nuclear. También se llaman cianofíceas o algas verde-azuladas, debido a que poseen sustancias fotosintéticas del tipo de la clorofila y ficocianina, un pigmento de color azulado. Como pueden realizar la fotosíntesis, desprenden oxígeno.

Son mayormente acuáticas con un amplio rango de salinidad y temperatura, pero mayormente en agua dulce. Algunas pueden formar, en épocas del año con temperatura favorable, una capa superficial de diversos colores conocida como flores de agua; como ejemplo está *Microcystis aeruginosa* que libera al medio sustancias tóxicas que pueden causar la muerte de los peces.

Algunas viven en aguas termales (hasta 80°C), en desiertos y lugares helados. Intervienen como formadoras del plancton. Contribuyen a la formación de arrecifes coralinos segregando carbonatos de Ca y Mg. Pueden ser utilizadas como indicadores biológicos de la contaminación porque muchas especies restringen su hábitat a aguas polucionadas.

La división presentó **03 especies**, la más predominante fue *Anabaena sp. (filamento)* con 33 cel/L, *y Oscillatoria tenuis (filamento)* con 32 cel/L (Figura 26).

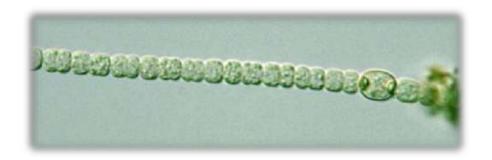


Figura 26. Anabaena sp.

8.2.2. Índices de Diversidad e Indicadores Biológicos

De la comunidad planctónica se analizaron exclusivamente los datos del fitoplancton por ser esta la comunidad mejor representada al presentar especies que se utilizan como indicadores biológicos.

Índice de Diversidad Específica Shannon - Wiener (H')

El presente índice Shannon – Wiener osciló de 2,092 a 2,700, encontrándose en el Rango de mediana diversidad (Figura 27). La más baja se presentó en la estación de Caltopa, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 1,636 a 2,818; encontrándose en el Rango de baja a mediana biodiversidad (Figura 27). Encontrándose con valores de baja biodiversidad en la estación de Caltopa, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

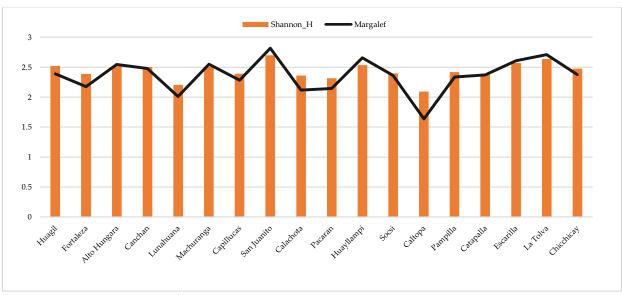


Figura 27. Índices de diversidad aplicados al fitoplancton – octubre 2019

8.3. Zooplancton

Las especies predominantes de zooplancton en los puntos de muestreo pertenecen a la División Rotifera con 4 325 Org/m³ (49,34%), Amoebozoa con 4 300 Org/m³ (49,06%) y Arthropoda con 140 Org/m³ (1,60%) como se puede observar en la Figura 28.

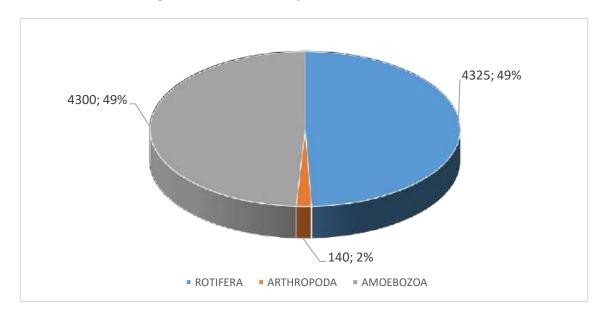
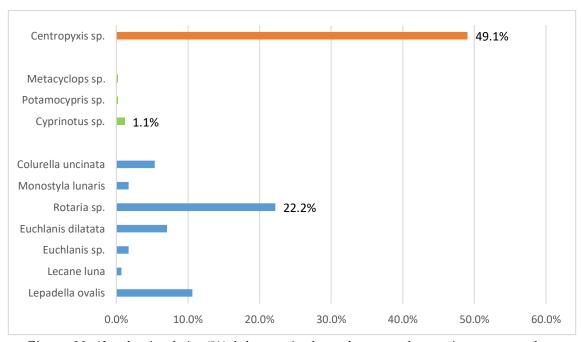



Figura 28. Porcentaje de divisiones de zooplancton identificado – octubre 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 29), el phyllum con mayor presencia es Rotífera, siendo *Rotaria sp.* especie con mayor abundancia relativa registrada 1945 Org/m³ (22,2%).

Figura 29. Abundancia relativa (%) de las especies de zooplancton en las estaciones muestreadas - octubre 2019.

8.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron **11 especies de organismos** pertenecientes a tres divisiones: **Amoebozoa, Rotífera y Arthropoda**. La abundancia total registrada en las 18 estaciones de muestreo fue de 8765 organismo/m³, teniendo mayor importancia en riqueza de especies los Rotíferos (Figura 30).

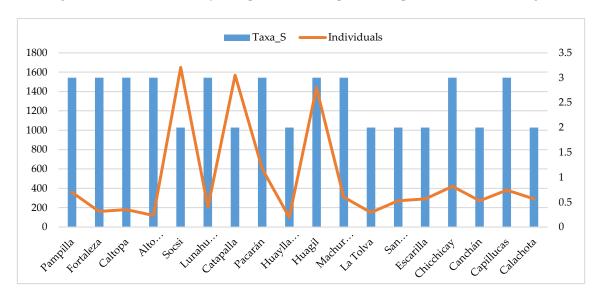


Figura 30. Abundancia y riqueza del zooplancton en las estaciones muestreadas - octubre 2019

Phylum Amoebozoa

Amoebozoa es un grupo amplio y diverso, pero ciertos caracteres son comunes a todos sus miembros. La célula se divide típicamente en una masa central granular denominada endoplasma y una capa externa más clara llamada ectoplasma. Durante la locomoción se producen flujos de endoplasma primero hacia el exterior de la célula y después en sentido contrario hacia el interior.

Son uno de los grupos principales de protozoos ameboides, incluyendo a la mayoría de los que se mueven por medio del flujo interno de citoplasma. Sus seudópodos son de tipo romo y en forma de dedo y se denominan lobopodios. La mayoría son unicelulares y son comunes en el suelo y en los hábitats acuáticos, encontrándose algunos en simbiosis con otro organismo, mientras que otros son patógenos.

Se identificó 01 especie siendo Centropyxis sp. con 49,06% (Figura 31).

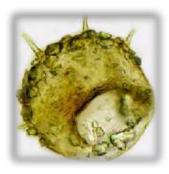


Figura 31. Centropyxis sp.

Phylum Arthropoda

Los artrópodos, phylum al que pertenecen los crustáceos, son animales esquizocelomados que poseen como característica común la presencia de un exoesqueleto quitinoso y apéndices articulados (de ahí el nombre del grupo: arthro=articulación, podos=patas). El exoesqueleto implica un problema para el crecimiento por lo que el animal para crecer debe reemplazarlo periódicamente, proceso denominado muda o ecdisis. El período entre dos mudas se denomina estadio. Los artrópodos constituyen el Phylum más abundante de todo el reino animal representando aproximadamente el 70% de las especies existentes sobre el planeta.

Se obtuvieron **03** especies del Phylum, siendo las más representativas las siguientes: *Cyprinotus sp.* con 100 Org/m³ y *Metacyclops sp.* con 20 Org/m³ (Figura 32).

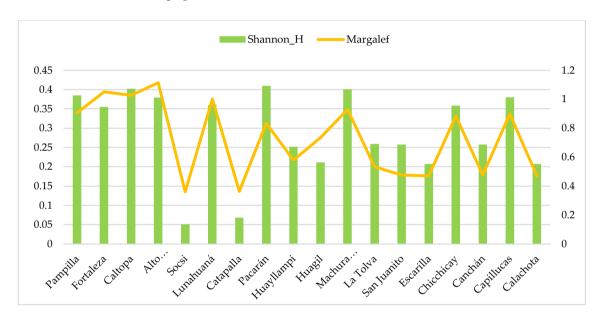
Figura 32. Metacyclops sp.

Phylum Rotífera

Los rotíferos juegan un papel fundamental en las cadenas tróficas pelágicas. Son un eslabón entre el fitoplancton y los consumidores secundarios, pero su importancia se acrecienta porque pueden transferir materia y energía desde bacterias y partículas detríticas de pequeño tamaño, que son recursos no utilizables por otros organismos planctónicos. Unas pocas especies pueden ser depredadoras de otras especies de rotíferos.

Se identificaron **07** especies siendo *Rotaria sp.*, con 1 945 (22,2%) y *Lepadella ovalis* con 930 (10,6%) (Figura 33)

Figura 33. Lepadella ovalis


8.3.2. Índices de Diversidad e Indicadores Biológicos

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Específica Shannon – Wiener osciló de 0,136 a 1,093; encontrándose en el rango de poca diversidad (Figura 34). La más baja se presentó en la estación de Socsi, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,135 a 0,418; encontrándose en Baja biodiversidad (en general resultado de efectos antropogénicos) (Figura 34). Encontrándose con valores de baja biodiversidad en la estación de Socsi, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

Figura 34. Índices de diversidad aplicados al zooplancton – octubre 2019

IX. RESULTADOS DE LA EVALUACIÓN DEL BENTOS

Uno de los grandes grupos de comunidades del agua dulce y de mar es los bentos, constituido por los organismos tanto vegetales como animales que viven relacionados con el fondo, semienterrados, fijos o que pueden moverse sin alejarse demasiado de él.

Bajo la denominación de "bentos" se incluyen los seres que viven en estrecha relación con el fondo acuático, tanto vegetales (fitobentos) como animales (zoobentos). Los organismos bentónicos que habitan sobre la superficie del sustrato son llamados epibiontes (epiflora y epifauna) y pueden vivir fijos al sustrato, otros pueden caminar sobre él, arrastrarse, o nadar en sus inmediaciones (nectobentos); el término epibiosis, a pesar de su sentido general, se emplea casi exclusivamente para los sustratos duros.

9.1. Muestreo Biológico

Las muestras biológicas se obtuvieron empleando la red surber (500 micras) para macroinvertebrados y un cuter - cepillo para el fitoplancton bentónico.

9.2. Macroinvertebrados bentónicos

Para los macroinvertebrados bentónicos se identificaron 06 Phylum: Platyhelminthes, Annelida, Nematoda, Mollusca, Cnidaria y Arthropoda. La predominancia es del Phylum Arthropoda con 29 800 Org/m² (89,30%), Phylum Annelida con 1 700 Org/m² (5,09%), Phylum Mollusca con 1 610 Org/m² (4,82%), Phylum Cnidaria con 170 Org/m² (0,51%), Phylum Platyhelminthes con 60 Org/m² (0,18%) y Phylum Nematoda con 30 Org/m² (0,09%) (Figura 35).

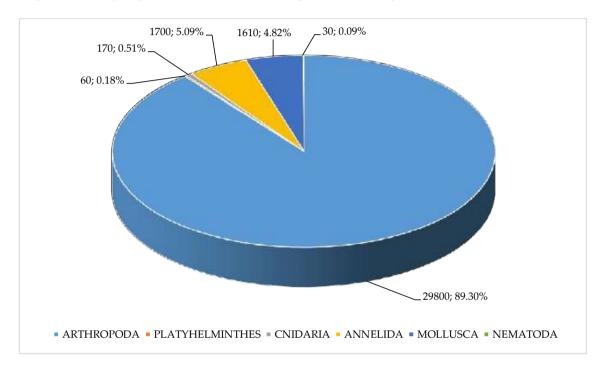
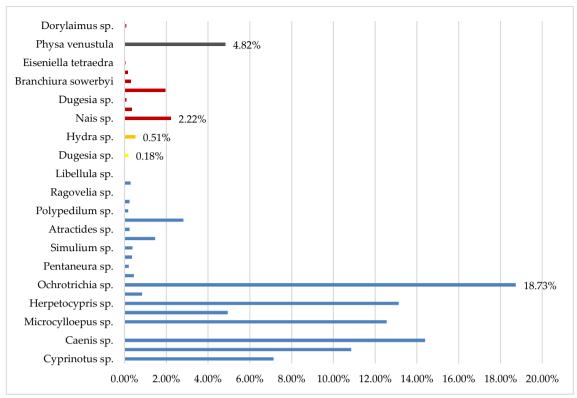



Figura 35. Macroinvertebrados bentónicos identificados en octubre 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 36), el phyllum dominante es Arthropoda, siendo *Ochrotrichia sp.*, la especie con mayor abundancia relativa registrada (18,73%).

Figura 36. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las estaciones muestreadas - octubre 2019.

9.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 36 especies pertenecientes a cinco divisiones: Platyhelminthes, Annelida, Nematoda, Mollusca, Cnidaria y Arthropoda. La abundancia total registrada en las 18 estaciones de muestreo fue de 33 370 organismos/m², teniendo mayor importancia en riqueza de especies los Arthropodos (Figura 37).

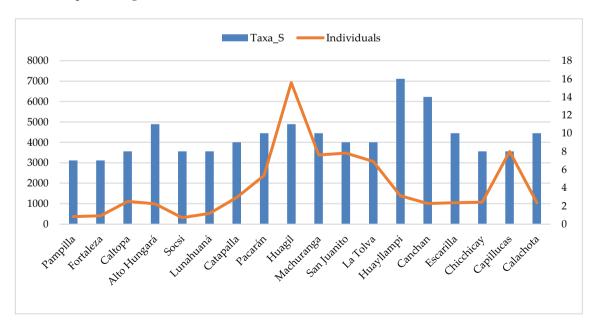


Figura 37. Riqueza y abundancia de las especies de bentos octubre 2019

Phylum Arthropoda

Se obtuvieron 21 especies del Phylum Arthropoda; encontrándose la más representativa la especie *Ochrotrichia sp.* con 6 250 Org/m² y *Caenis sp.* con 4 800 Org/m² (Figura 38 y 39).

Figura 38. Caenis sp.

Figura 39. Ochrotrichia sp.

Phylum Annelida

Se obtuvieron 07 especie del Phylum Annelida, encontrándose la especie más representativa Nais sp., con 740 Org/m² (Figura 40).

Figura 40. Nais sp.

Phylum Mollusca

Se obtuvo 01 especie del Phylum Mollusca, encontrándose para la clase Gastropoda la especie más representativa *Physa venustula* con 1 610 Org/m². (Figura 41).

Figura 41. Physa venustula

Phylum Nematoda

Se obtuvo 01 especie del Phylum Nematoda, encontrándose la especie más representativa *Dorylaimus sp.*, con 30 Org/m² (Figura 42).

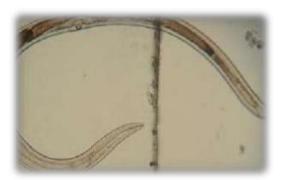


Figura 42. Dorylaimus sp

Phylum Platyhelminthes

Se obtuvo 01 especies del Phylum Platyhelminthes, encontrándose para la clase Turbellaria la especie *Dugesia sp.*, con 60 Org/m² (Figura 43).

Figura 43. Dugesia sp.

Phylum Cnidaria

Se obtuvo 01 especies del Phylum Cnidaria, encontrándose la especie *Hydra sp.*, con 170 Org/m² (Figura 44).

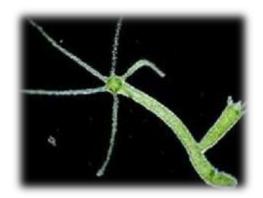
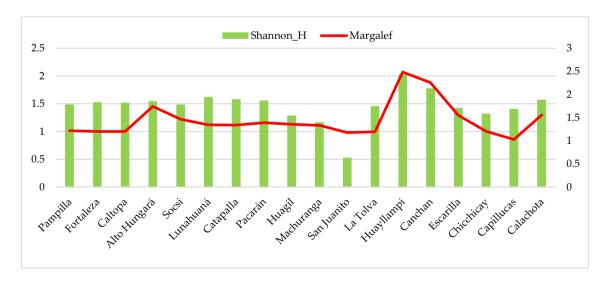


Figura 44. Hydra sp.

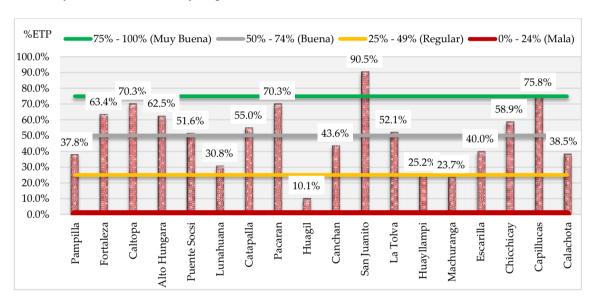

9.2.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 0,6366 a 2,432; encontrándose de acuerdo a los rangos de poca a mediana diversidad (Figura 45). La más baja se presentó en la estación de San Juanito, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,856 a 2,073; encontrándose en el rango de baja a mediana biodiversidad (Figura 45). Encontrándose con valores de baja biodiversidad en la estación de Capillucas, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.


Figura 45. Índices de diversidad biológica de macroinvertebrados bentónicos encontrado en el presente monitoreo – octubre 2019

% EPT

Según el índice Biótico BMWP Biological Monitoring Working Party, es uno de los índices que aún no han sido estandarizados como una metodología para establecer las condiciones de calidad del agua en los ríos de la sierra y costa del Perú. Por lo que se decidió aplicar el índice % EPT que, si se encuentra estandarizado para los ríos de la costa, sierra y selva del Perú y de acuerdo a los resultados obtenidos sería un buen indicador de calidad de agua para los ríos de la zona evaluada, sin dejar de dar valor al primer índice.

Para el presente monitoreo (octubre 2019), se pudo observar cuatro zonas de calidad bien definidas, según la Figura 46:

- Mala: Huagil, Machuranga.
- Regular: Pampilla, Lunahuana, Canchan, Huayllampi, Calachota.
- Buena: Fortaleza, Caltopa, Alto Hungará, Puente Socsi, Catapalla, Pacarán, La Tolva, Chiccichay.
- Muy Buena: San Juanito y Capillucas.

Figura 46. % EPT de macroinvertebrados bentónicos encontrados para el presente monitoreo – octubre 2019.

9.3. Fitoplancton bentónico

Para el Fitoplancton bentónicos se identificaron 3 Divisiones: Bacillariophyta, Chlorophyta y Cyanophyta. La división predominante ha sido Bacillariophyta con un 86,30% (636 cél/mm²), seguido de la división Chlorophyta con 9,23% (68 cél/mm²) y la división Cyanophyta en un 4,48% (33 cél/mm²) (Figura 47).

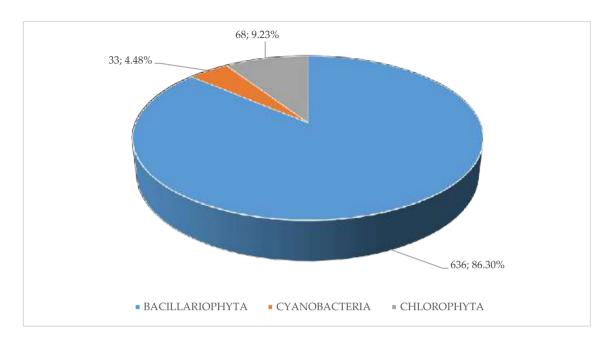
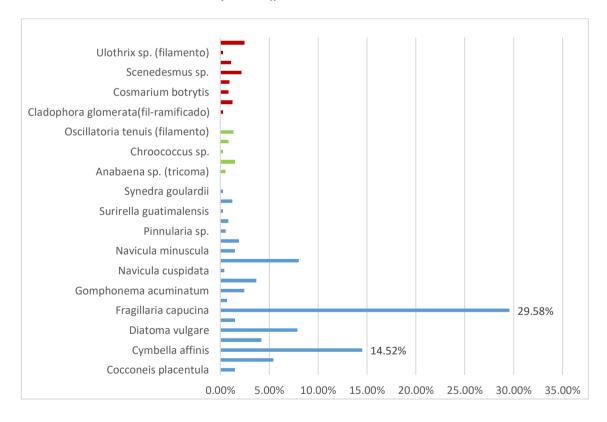



Figura 47. Porcentaje del fitoplancton bentónico obtenido en el presente monitoreo – octubre 2019

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 48), el phyllum dominante es Bacillariophyta, siendo *Fragillaria capucina*, la especie con mayor abundancia relativa registrada (29,58%). La especie siguiente con mayor abundancia relativa son también diatomeas; *Cymbella affinis* (14,52%).

Figura 48. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estaciones muestreadas – octubre 2019

9.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 32 especies pertenecientes a tres divisiones: Bacillariophytas, Cyanophytas y Chlorophyta. La abundancia total registrada en las 18 estaciones de muestreo fue de 737 cél/mm², teniendo mayor importancia en riqueza de especies las Bacillariophytas (Figura 49).

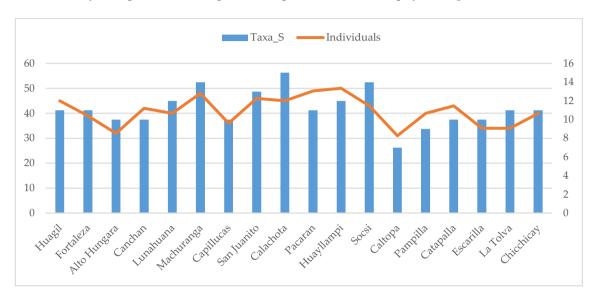


Figura 49. Abundancia y riqueza del fitoplancton bentónico en las estaciones muestreadas – octubre 2017

División Bacillariophyta

En la División Bacillariophyta se observaron 19 especies donde las más representativas han sido *Fragillaria capucina* con **218 cél/mm²** y *Cymbella affinis* con **107 cél/mm²** (Figura 50 y 51).

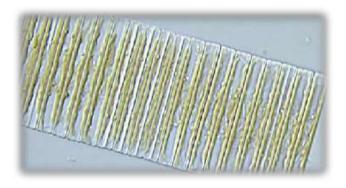


Figura 50. Fragillaria capucina

Figura 51. Cymbella affinis

División Chlorophyta

Se registraron 08 especies en la División Chlorophyta entre las más destacadas: *Pediastrum boryanum (cenobio)* con **18 cél/mm²** (Figura 52).

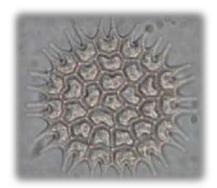


Figura 52. Pediastrum boryanum (cenobio).

División Cyanophytas

En la División Cyanophytas, registró 05 especies, siendo *Calothrix sp. (tricoma*)con **11 cél/mm²** (Figura 53).

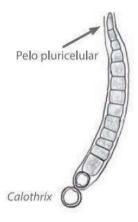


Figura 53. Calothrix sp. (tricoma)

9.3.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 1,718 a 2,376 encontrándose de acuerdo al rango de mediana diversidad (Figura 54). La más baja se presentó en la estación de **Caltopa**, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.).

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 1,747 a 3,678 encontrándose en rango de baja a una mediana biodiversidad (Figura 54). Encontrándose con valores de baja biodiversidad en la estación de **Caltopa**, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.



Figura 54. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – octubre 2019

IDG

El índice biótico IDG utiliza a las diatomeas para hacer una valoración de la calidad del agua. Estas algas son conocidas como buenos indicadores y su uso se ha reportado e diversos países tanto sudamericanos como europeos. Los resultados por punto de muestreo siguen el mismo patrón de los índices de diversidad. (Tabla 44 y Figura 55)

Tabla 44. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – octubre 2019

Estación	IDG	Significado
Huagil	4.00	Calidad normal. Polución débil
Fortaleza	4.07	Calidad normal. Polución débil
Alto Hungara	4.13	Calidad normal. Polución débil
Canchan	4.05	Calidad normal. Polución débil
Lunahuana	4.00	Calidad normal. Polución débil
Machuranga	4.00	Calidad normal. Polución débil
Capillucas	4.06	Calidad normal. Polución débil
San Juanito	4.05	Calidad normal. Polución débil
Calachota	4.02	Calidad normal. Polución débil
Pacaran	4.15	Calidad normal. Polución débil
Huayllampi	4.12	Calidad normal. Polución débil
Socsi	4.02	Calidad normal. Polución débil
Caltopa	3.94	Polución moderada. Eutrofización
Pampilla	4.17	Calidad normal. Polución débil
Catapalla	4.14	Calidad normal. Polución débil
Escarilla	4.00	Calidad normal. Polución débil
La Tolva	3.97	Polución moderada. Eutrofización
Chicchicay	4.08	Calidad normal. Polución débil

Elaborado: Celepsa - Octubre 2019

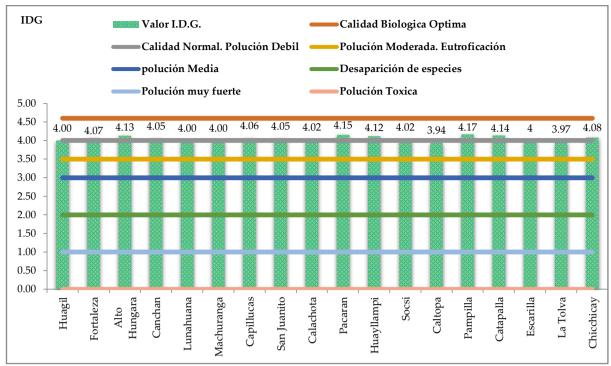
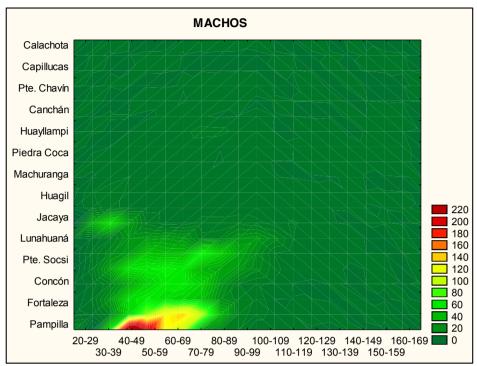


Figura 55. IDG de fitoplancton bentónicos encontrados para el presente monitoreo octubre 2019.

X. TECNICAS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTRE COMUNIDADES SOBRE LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGUA EN BASE A BIOINDICADORES.

10.1. Análisis de Frecuencias de Tamaños de Camarón a lo largo del río Cañete.

Distribución de Tamaños


El rango de tamaños del camarón estuvo entre los 20 y 159 mm de longitud. Los rangos de tamaños por sexo indican que la mayor frecuencia para machos se encontró entre los rangos de 70-79 y para las hembras se encontraron entre los rangos de 60-69mm. Asimismo, los niveles de porcentaje de ejemplares > a 70 mm fueron más altos en la población de machos (59.08%) que en hembras (40.92%).

El Análisis log-linear demostró que la distribución espacial de los camarones a lo largo del río, tiene una relación con el sexo, los márgenes del rio, así como la altitud de las estaciones muestreadas.

Se pudo observar claramente que los ejemplares machos menores a 70 mm estuvieron distribuidos en las zonas bajas del área de estudio (Pampilla, Lucumo, Fortaleza, Alto Hungara, Con-Con, Caltopa, Pte. Socsi, Lunahuana, Pte. Catapalla, Jacaya, Pte. Pacarán, Huagil, Zuñiga y Machuranga) encontrándose una mayor abundancia de camarones machos y hembras hacia las márgenes del rio. Ejemplares machos mayores a 70 mm fueron localizados principalmente en las estaciones: Paullo, San Juanito, Piedra Coca, La Tolva, Huayllampi y Tacuasimonte hacia ambas márgenes del rio Cañete. Por otro lado, ejemplares hembras mayores a 70 mm fueron localizadas en la estación: Machuranga y Tacuasimonte. Además, se observó un ligero aumento de camarones hembras mayores a 70mm en las estaciones de Piedra Coca, Huayllampi y Chavín.

Análisis del componente ambiental sobre la distribución por tamaños.

Las variables con mayor efecto de discriminación entre los grupos fueron temperatura del agua, temperatura ambiental, Oxigeno, dureza, pH, transparencia y caudal.

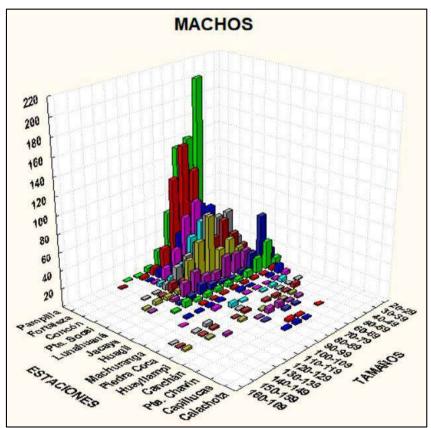
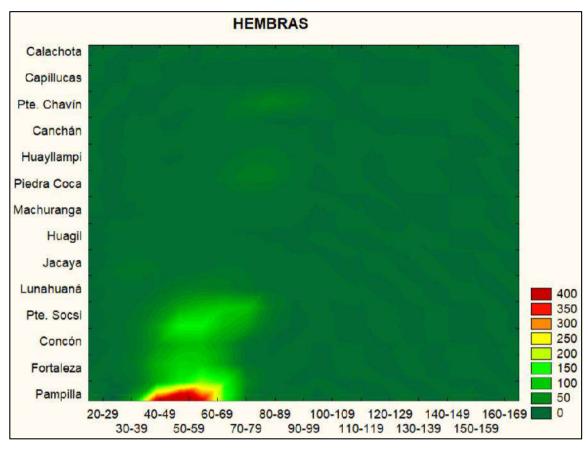



Figura 56. Frecuencia de tamaños por sexo (machos) y estación de muestreo

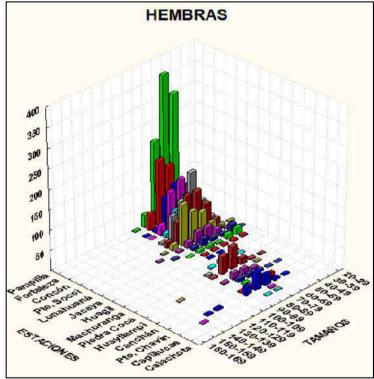
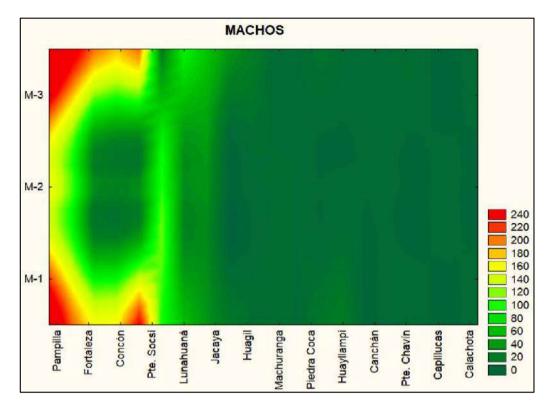



Figura 57. Frecuencia de tamaños por sexo (hembras) y estación de muestreo

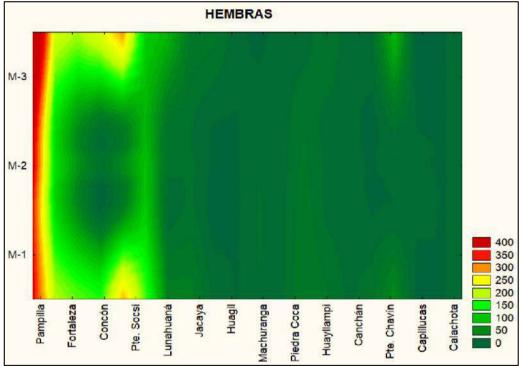


Figura 58. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo

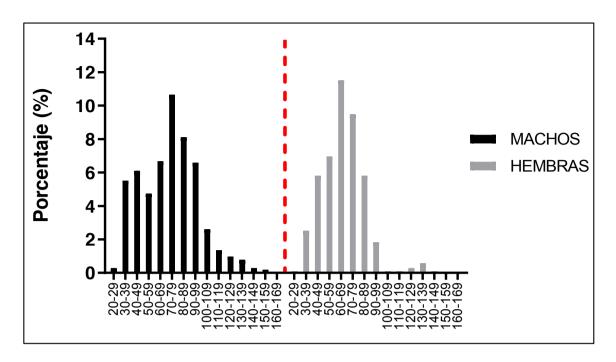
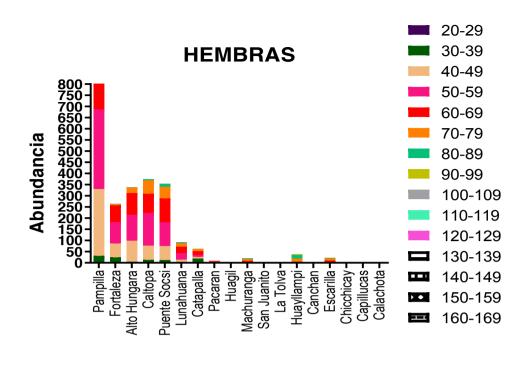



Figura 59. Distribución de la frecuencia de tamaños por sexo

10.2. Análisis del efecto ambiental sobre el camarón de rio

Los resultados indican una relación directa entre las mayores abundancias del camarón con la temperatura del agua, transparencia, dureza y pH del agua, que fueron medidas en las estaciones de muestreo: Fortaleza, Caltopa, Chicchicay y Escarilla, zonas altas, zonas intermedias y bajas del área de estudio así como, cierta asociación con el perifiton (*Fragillaria capuccina, Scenedesmus sp., Cooconeis placentula y Closterium leibleiini*) y macroinvertebrados bentónicos (*Ochrotrichia sp., Physa venustula y Tubifex sp.*)

De manera contraria existe una relación directa entre la menor abundancia del camarón de rio influenciadas por la temperatura de ambiente, el caudal y el oxígeno disuelto en el agua; además las estaciones: Pacarán y Alto Hungará se observó menor abundancia del camarón.

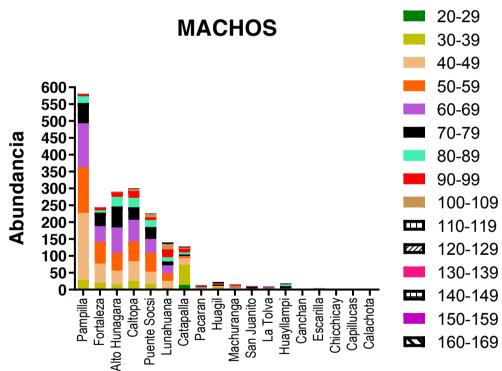


Figura 60. Abundancia de hembras y machos por estación de muestreo

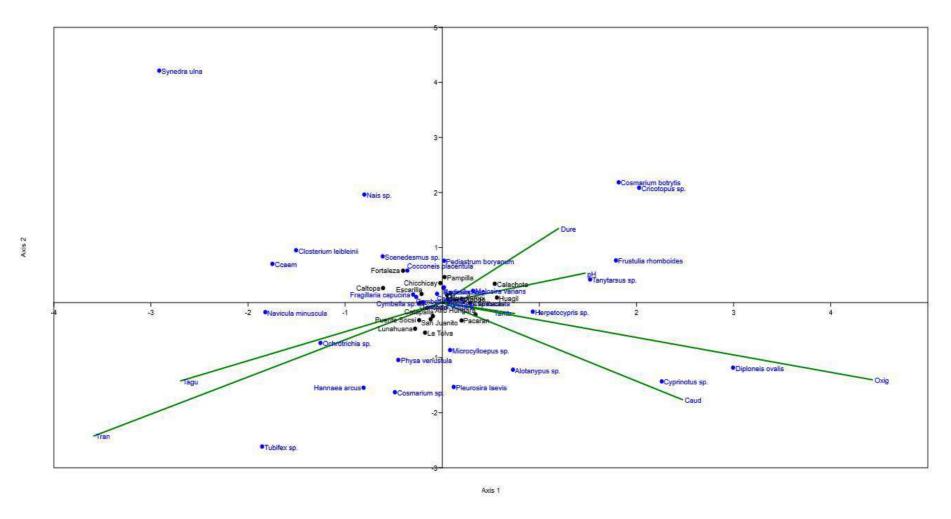


Figura 61. Análisis de Correspondencia Canónica abundancia del camarón, variables ambientales e indicadores biológicos Monitoreo octubre 2019

10.3. Análisis de calidad de agua en base a indicadores biológicos

Análisis de parámetros fisicoquímicos.

Según las variables físico-químicas se pudo caracterizar las estaciones de la siguiente manera:

- La temperatura ambiental sufrió muchas variaciones en las diferentes estaciones de muestreo, teniendo una mínima de (20,2 °C) en Zuñiga y máxima en Tacuasimonte (33,5°C), esto dependiendo del horario del día en que se registró este parámetro, lo que influenció en la temperatura del agua.
- Los valores de la temperatura del agua en las estaciones: Calachota, Putinza, Capillucas, Chicchicay, Chavín y Escarilla (1 300 -1 700 m.s.n.m.), y las estaciones: Zuñiga, Huagil, Pacaran y Jacayita (500 900 m.s.n.m.) se mantuvieron entre los 16,0 y 21,5°C, además, entre las estaciones Calachota, Putinza y Capillucas (1 500 1 700 m.s.n.m.) y las estaciones Huagil y Pacarán (500 700 m.s.n.m.) los valores del caudal fueron altos, es decir, el agua del rio Cañete tuvo mayor correntada, lo que indica que estas variables influyeron en el oxígeno disuelto resultando valores mayores a los establecido en el ECA agua.
- Los valores de turbidez siempre se mantuvieron bajos (0,88 1,87 NTU). Los valores de pH se mantuvieron entre los 8,10 y 9,5, lo que significa valores normales para este tipo de ambiente acuático, a pesar que en algunas estaciones sobrepasaba ligeramente el valor establecido para el ECA agua (8,5).
- Según el Análisis de Componentes Principales (ACP) se concluye que la temperatura del agua, la temperatura del ambiente y la dureza fueron los parámetros que influenciaron a todas las estaciones.
- El oxígeno disuelto, el pH y la transparencia influenciaron las estaciones: Lucumo, Escarilla, Piedra Coca, Concon, Tacuasimonte, Huayllampi, San Juanito y Chavín

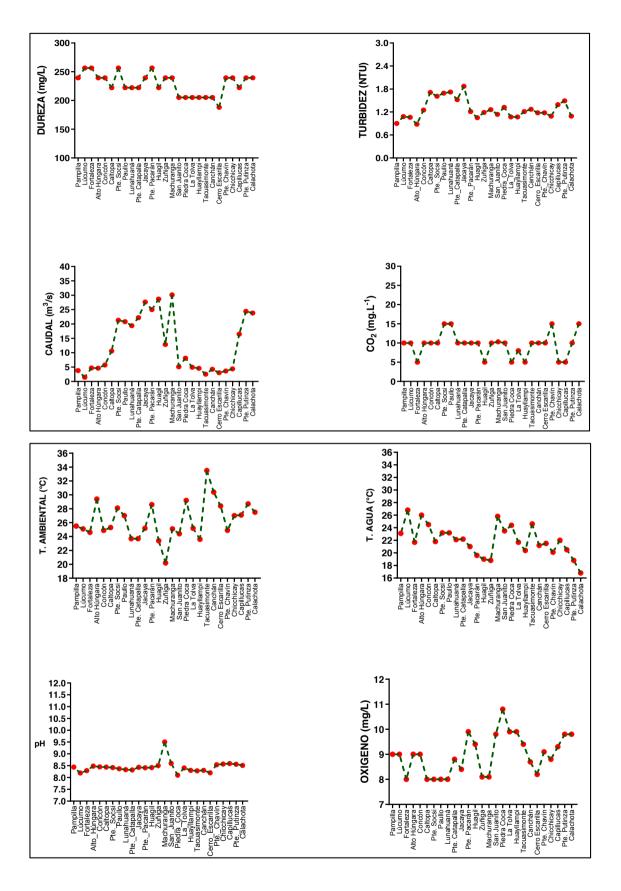


Figura 62. Parámetros de monitoreo por estaciones octubre 2019

Composición de especies del perifiton

- Se identificaron un total de 29 especies de las cuales 19 pertenecen a la división Bacillariophyta, 3 a la Cyanobacteria, y 7 a la Chlorophyta. Las especies dominantes al interior de cada división fueron: *Fragillaria capucina*, *Oscillatoria tenuis y Scenedesmus sp.*
- Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de perifiton así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:
- La estación Caltopa (100-300 m.s.n.m.) ubicada en la zona baja, las estaciones Machuranga (700-900 m.s.n.m), San Juanito y La Tolva (900-1 100), ubicadas en la zona media y las estaciones Huayllampi (1 100- 1 300 m.s.n.m.) y Calachota (1 500-1 700 m.s.n.m.) ubicadas en la zona alta estuvieron influenciadas por una mayor presencia de las microalgas: *Pleurosia laevis y Diploneis ovalis*.
- Las estaciones Pampilla (0-100 m.s.n.m.), Alto Hungara (100-300 m.s.n.m.) y Lunahuana (300-500 m.s.n.m.) ubicadas en la zona baja y la estación Chicchicay (1 300-1 500 m.s.n.m.) ubicada en la zona alta, fueron influenciadas por la presencia de las microalgas: *Closterium leibleinii y Synedra ulna*.
- La estación Pte. Socsi (300-500 m.s.n.m.) ubicada en la zona baja, la estación Catapalla (500-700 m.s.n.m.) ubicada en la zona media y las estaciones Canchan (1100-1300 m.s.n.m.) y Escarilla (1300-1500 m.s.n.m.) ubicadas en la zona alta vieron influenciadas por la presencia de las microalgas: *Cooconeis placentula, Hannea arcus, Navicula minúscula y Melosira varians*.
- La estación Fortaleza (0-100 m.s.n.m.) ubicada en la zona baja, las estaciones Pacarán (500-700 m.s.n.m.) y Huagil (700-900 m.s.n.m.) ubicadas en la zona media y la estación Capillucas (1500-1700 m.s.n.m.), se vieron influenciadas por las microalgas: *Frustula rhomboides, Pediastrum boryanum, Cosmarium sp. y Scenedesmus sp.*

Composición de especies del macroinvertebrados bentónicos

- Se identificaron un total de 32 especies de las cuales 07 pertenecen al phyllum Annelida, 21 al Arthropoda, 01 especie del phyllum Mollusca, 01 especie del phuyllum Nemátoda, 01 especie del phyllum Cnidaria y 01 especie al phyllum Platyhelminthes. La especie dominante al interior de cada grupo taxonómico fueron: Nais sp. (phyllum annelida), Ochrotrichia sp. (phyllum arthropoda) respectivamente.
- Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de macroinvertebrados bentónicos así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:
- Las estaciones Pampilla (0-300 m.s.n.m.) y Alto Hungara (100-300 m.s.n.m.) ubicadas en la zona baja, la estación Huagil (700-900 m.s.n.m.), ubicada en la zona media y las estaciones Calachota (1500-1700 m.s.n.m.), Escarilla (1300-1500 m.s.n.m.) y Capillucas (1500-1700 m.s.n.m.) ubicadas en la zona alta del área de estudio se caracterizaron por la presencia de las siguientes especies de macroinvertebrados bentónicos: *Tanytarsus sp., Cyprinotus sp., Cricotopus sp., Alotanypus sp., y Herpetocypris sp.*

- Las estaciones Pte. Sosci (300-500 m.s.n.m.) y Lunahuana (300-500 m.s.n.m.) ubicadas en la zona baja y la estación La Tolva (900-1100 m.s.n.m.) ubicada en la zona media de estudio se caracterizaron por la presencia de los siguientes macroinvertebrados: *Tubifex sp. y Microcylloepus sp.*
- Las estaciones Fortaleza (0-100 m.s.n.m.) y Caltopa (100-300 m.s.n.m.) ubicadas en la zona baja, las estaciones Catapalla, Pacarán (500-700 m.s.n.m.) y San Juanito (900-1100 m.s.n.m.) ubicadas en la zona media del área de estudio y la estación Canchán (1100-1300 m.s.n.m.) ubicada en la zona alta se caracterizaron por la presencia de los macroinvertebrados bentónicos: *Physa venustula y Ochrotrichia sp.*
- La estación Machuranga (700-900 m.s.n.m.) ubicada en la zona media y las estaciones Huayllampi (1100-1300 m.s.n.m.) y Chicchicay (1300-1500 m.s.n.m.) pertenecientes a la zona alta, estuvieron influenciadas por los siguientes macroinvertebrados bentónicos: *Caenis sp., Andesiops sp. y Nais sp.*

Distribución de especies del macroinvertebrados bentónicos, perifiton y su relación con las variables hídricas.

Los resultados del ACC indicaron lo siguiente:

- El oxígeno disuelto, la temperatura de ambiente, el pH y la dureza influenciaron en la presencia de los macroinvertebrados: *Tanytarsus sp., y Herpetocypris sp.* además de la presencia de la microalga: *Cosmarium botrytis, Cricotopus sp y Frustulia rhomboides*.
- La presencia de las especies de macroinvertebrados: *Cyprinotus sp., Alotanypus sp. y Microcylloepus sp.*, y así como la microalga: *Pleurosia laevis*. estuvieron influenciados por el caudal del agua.
- La presencia de las especies de macroinvertebrados bentónicos: *Physa venustula y Tubifex sp.*, así como de las microalgas: *Hannaea arcus, Navicula minúscula, Cymbella sp y Diatoma vulgare* se vieron influenciadas por la transparencia y la temperatura del agua.

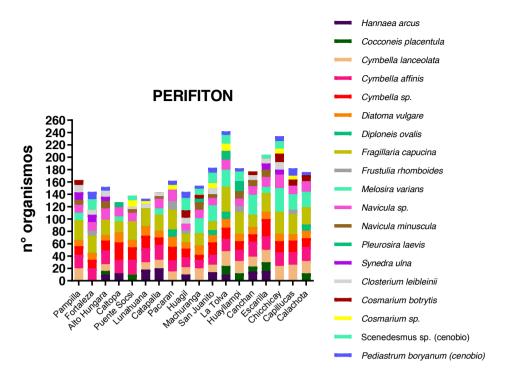


Figura 63. Abundancia de la comunidad del perifiton por estaciones de muestreo

MACROINVERTEBRADOS

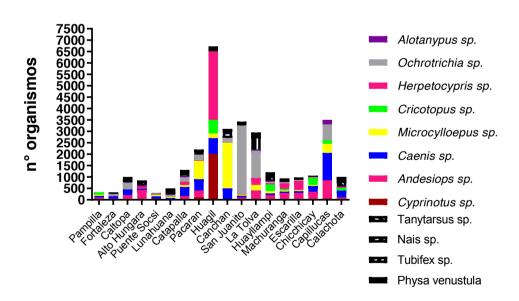


Figura 64. Abundancia de la comunidad del bentos por estaciones de muestreo

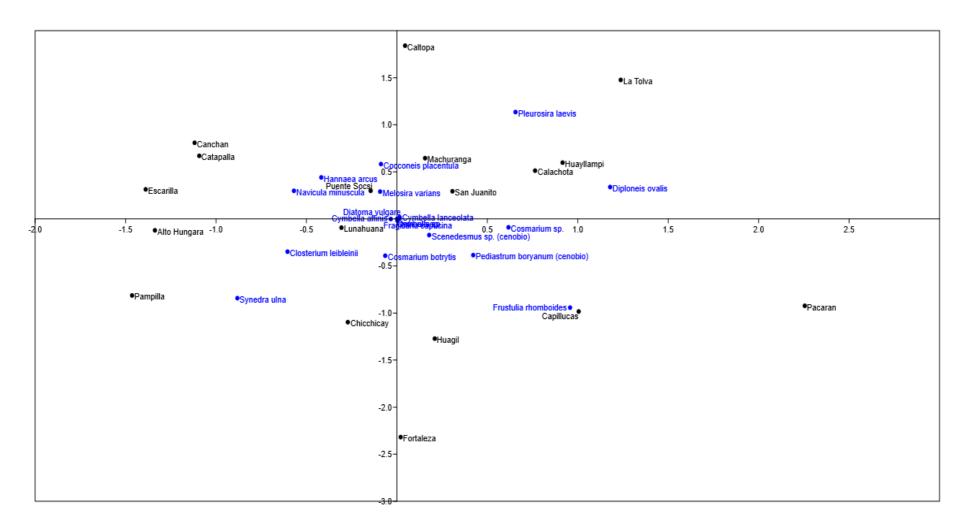


Figura 65. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton

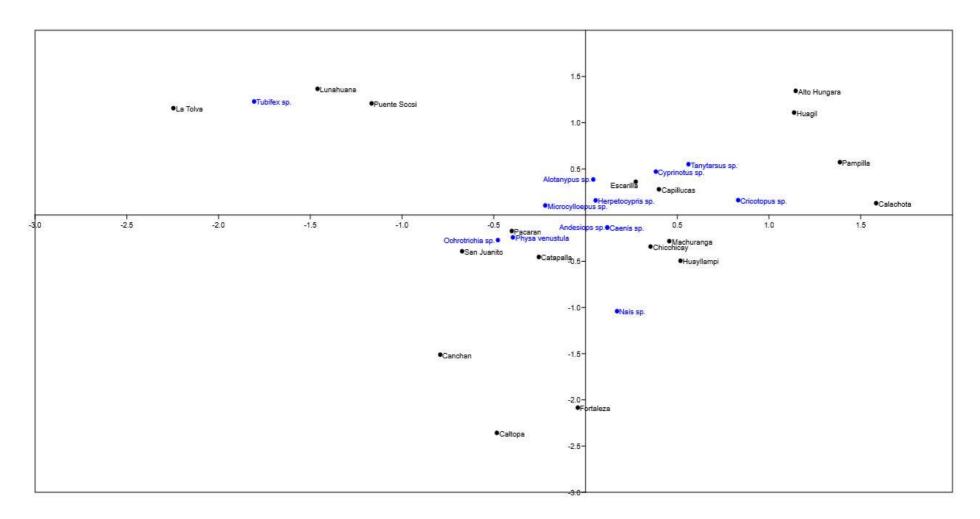


Figura 66. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos

XI. CONCLUSIONES

- Las muestras evaluadas fueron realizadas aún 95% de significancia en cada estación de muestreo.
- De acuerdo a la distribución por estratos de los machos y hembras en el río Cañete, se observa que la población de hembras se acerca a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico, debido a que dicho sector ha mejorado su habitabilidad para el crecimiento de las hembras, razón por la que ellas son las que mas abundan y se desarrollan óptimamente en dicho sectore.
- En base a la madurez gonadal, para los machos, el mayor porcentaje de la población se encuentra en estadio Inactivo o de Reposo y para las hembras, el mayor porcentaje de la población se encuentra en estadio Inactivo o de Reposo. Por lo tanto, para esta etapa de evaluación los machos y hembras representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan. Estos serán los primeros productores reclutas de primavera.
- Se evaluó que el 26,94% de la abundancia y el 59,88% de biomasa estaría disponible de ser capturada en los próximos meses, considerando la finalización de época de veda.
- Comparando octubre 2018 a octubre 2019, la biomasa aumento en un 64,1% (6 088 kg) y la Abundancia aumento en un 68,1% (791 094 individuos).
- En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo se encuentra dentro de los rangos para el desarrollo del camarón.
- De las estaciones en el presente monitoreo, el pH se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6,5 a 8,5).
- Los valores de oxígeno del presente monitoreo son normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥ 5).
- De acuerdo a la dureza los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio obteniéndose valores óptimos para su desarrollo en el presente monitoreo.
- Los valores de CO₂, algunas estaciones se encuentran dentro del rango sugerido donde se indica que valores < 7 mg/L permiten el desarrollo de la acuicultura.
- La erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas. Por lo tanto, la turbidez evaluada es óptima para el desarrollo de los camarones.

- Para el fitoplancton la distribución con mayor presencia de abundancia relativa en todas las estaciones, fue el phyllum Bacillariophytas, con la especie siendo Fragillaria capucina especie con mayor abundancia relativa. De acuerdo a los índices evaluados La más baja se presentó en la estación de Caltopa, por lo se puede decir que la zona está sometido a efectos antropogénicos (vertimientos, dragados, canalizaciones, construcciones, etc.).
- De acuerdo al zooplancton la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Rotífera, siendo *Rotaria sp.* De acuerdo a los índices evaluados la más baja se presentó en la estación de Socsi, por lo se puede decir que están sometidas a efectos antropogénicos (vertimientos, dragados, canalizaciones, construcciones, etc.).
- De acuerdo al macroinvertebrados bentónicos la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Arthropoda, con la especie Ochrotrichia sp. De acuerdo a los índices evaluados la más baja se presentó en las estaciones de San Juanito y Capillucas, por lo se puede decir que están sometidas a efectos antropogénicos (vertimientos, dragados, canalizaciones, construcciones, etc.). Además, el %EPT oscilo de mala a muy buena.
- De acuerdo al zooplancton la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phylum Bacillariophyta, con la especie *Fragillaria capucina*. De acuerdo a los índices evaluados la más baja se presentó en la estación de Caltopa, por lo se puede decir que están sometidas a efectos antropogénicos. Además, el IDG oscilo de calidad normal o moderada.
- Se sugiere la existencia de una distribución espacial relacionada con el tamaño de los camarones debido a la diferencia en la ubicación de los individuos mayores y menores de 70 mm a lo largo del rio y en cada uno de sus márgenes, posiblemente a factores como el sexo de los organismos y parámetros físicos-químicos como la temperatura del agua, pH, caudal, etc.
- Es posible que la mayor abundancia de hembras mayores a 70mm en las zonas altas (Piedra Coca, Huayllampi y Chavín) indique zonas potenciales para su crecimiento y desove, esto debido a las buenas condiciones físico-químicas de las estaciones dentro del Caudal Ecologico y la buena calidad biologica del agua.
- Durante el monitoreo correspondiente al mes de octubre 2019, las zonas de mayor abundancia de camarón se distribuyeron en las partes bajas a medias del río Cañete (Pampilla, Fortaleza, Alto Hungara, Caltopa, Pte. Socsi, Lunahuana y Catapalla).
- Se pudo observar una presencia mínima de organismos machos y hembras de camarón en los sectores de Pacarán, Huagil, Machuranga, San Juanito, La Tolva, Huayllampi, Escarilla, Chichicay probablemente por la influencia de los parámetros fisicoquímicos (temperatura del agua) y el desplazamiento natural de los camarones aguas arriba, en esta época del año.
- Las zonas bajas del Río Cañete (0-500 m.s.n.m.) presentaron algunas especies (*Nais sp., Fragillaria capuccina, Navicula minúscula, etc.*) indicadoras de buena calidad de agua, por lo que sugerimos una relación directa con la mayor abundancia de los camarones.
- En el estrato que abarca desde los 1100 a 1700 m.s.n.m. (zonas altas), las estaciones presentan una mayor abundancia de especies indicadoras de buena calidad de agua, tanto

- macrobentos (Caenis sp., Andesiops sp., Herpetocypris sp., Alotanypus sp., Nais sp.), como fitoplancton (Diploineis ovalis, Synedra ulna y Frustulla rhomboides) sugiriendo una mínima contaminación.
- En el estrato que abarca desde los 0 a 1100 m.s.n.m. (zonas bajas-intermedias), las estaciones presentan una disminución en la abundancia de especies indicadoras de buena calidad de agua, es decir, se tendría una contaminación moderada, pero que aún no llegaría a alterar de manera significativa las comunidades biológicas.

XII. RECOMENDACIONES

- Se recomienda seguir con las estimaciones de bio-indicadores de calidad de agua mediante el IDG y ACP.
- Se recomienda continuar con el repoblamiento introcuenca de juveniles en el Caudal Ecológico y aguas arriba de la presa Capillucas, que permita mantener la distribución y población adecuada en dicho tramo, involucrando a las autoridades locales, para que entiendan la necesidad de lograr un desarrollo económico con responsabilidad ambiental y aprovechamiento racional sobre sus recursos económicos potenciales como el camarón de rio.
- Se recomienda seguir con el Programa de Control y Vigilancia del camarón de río para ayudar a una recuperación rápida del recurso minimizando los impactos de una pesca irresponsable y ampliarlo hacia los sectores del caudal ecológico por encontrarse la especie muy vulnerable debido al bajo caudal y muy expuesta a ser modificada de manera negativa por intervenciones antrópicas.

XIII. BIBLIOGRAFÍA

APHA-AWWA-WEF. 1999. Standard Methods for the Examination of Water and Wastewater. 20th Edition. Part 10200, PlanKton. Washington.

Espino, M. Y C. Wosnitza- Mendo. 1984. Manuales de Evaluación de peces N°1 área barrida. Int. Mar Perú N° 86. 31 pp.

Ministerio de Pesquería, Industria Pesquera de Consumo Humano Directo. 2001. Protocolo para el monitoreo de efluentes y cuerpo marino receptor. Diario Oficial "El Peruano", Normas Legales, Separata Especial, pp 215564-215582 - Lima.

Viacava M., Aitken R y Llanos J. 1978. Estudio del camarón en el Perú 1975 - 1976. Boletín del Instituto del Mar del Perú. Vol. 3 No 5.

Walsh Perú S.A. 1998. Volumen II: Diagnóstico Ambiental para el EIA del Proyecto Hidroeléctrico El Platanal. Cuenca Media y Alta del Río Cañete. Lima - Perú.

Walsh Perú S.A. julio 2001. Primer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. 2001. Evaluación Poblacional y Ambiental del Camarón de Río Cryphiops caementerius en el Río Cañete. Lima - Perú.

Walsh Perú S.A. octubre 2001. Segundo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal-Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2002. Tercer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2002. Cuarto Monitoreo de Camarón de Río Cryphiops caementaríus en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. mayo 2003. Quinto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2003. Sexto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2004. Séptimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2004. Octavo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2005. Noveno Monitoreo de Camarón de Río Cryphíops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2005. Décimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2006. Undécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2006. Duodécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

CELEPSA. julio 2007. Décimo Tercer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2007. Décimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2008. Décimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2008. Décimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2009. Décimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2009. Décimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2010. Décimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2010. Vigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2011. Vigésimo Primer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2011. Vigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2012. Vigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2012. Vigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2013. Vigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2013. Vigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2014. Vigésimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2014. Vigésimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2015. Vigésimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2015. Trigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2016. Trigésimo Primero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2017. Trigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2018. Trigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2018. Trigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2019. Trigésimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

XIV. ANEXOS

ANEXO 1 MARCO TEÓRICO PARA EL PROGRAMA DE MONITOREO

El Programa de Monitoreo de Camarones permitirá hacer un seguimiento de las variables determinantes de la población y detectar - con validez estadística - en qué momento se superan los Límites Aceptables de Cambio (LACs), estableciendo las medidas a considerar como complemento al Plan de Manejo.

Para detectar los cambios inducidos en la población por los efectos del proyecto, la serie de datos a registrarse se organizará considerando un diseño "antes del proyecto" y "durante el proyecto"; así como, "área no perturbada" y "área impactada". Este diseño (ACDI) se puede expresar de modo gráfico como sigue:

Figura 67. Programa de Monitoreo

Un diseño ADCI¹tiene como objetivo la recopilación de información tanto en la zona en que se registrarán efectos ambientales como en una zona de control que esté libre de toda influencia de impacto. Para ambas zonas se requerirán registros antes y después de los efectos ocurridos.

La comparación del modo en que evolucionan las "zonas de control" e "impactadas" luego de la ocurrencia del impacto, es la forma más eficiente de demostrar la existencia de unas comparaciones estadísticas entre "zonas" y entre los registros "antes" y "después" de los impactos se harán según un diseño muestra (el diseño experimental no resulta adecuado para este tipo de evaluaciones). Cada una de las estimaciones de cualquiera de las variables en análisis estará acompañada de su correspondiente Intervalo de Confianza (IC). Al comparar una variable en dos momentos o en dos zonas, se tomará como evidencia de "diferencias estadísticamente significativas", entre ambas, si sus correspondientes IC no se sobreponen.

La selección de las áreas no perturbadas (zonas de control) y de las áreas no impactadas (zonas impactadas) tomará en cuenta los sectores del río Cañete evaluados. A continuación, se describen las características de estos sectores en función del marco teórico del monitoreo y los resultados obtenidos.

¹Sánchez, E. 2000 Determinación de los patrones espacio-temporales de uso recreativo de la Reserva Nacional de Paracas y estimación del Impacto Ambiental de esta actividad. Estudio. Instituto Nacional de Recursos Naturales - INRENA. Lima.

ANEXO 2

Tabla 45. Datos Características de las Estacione de muestreo

ESTACION	FECHA	HORA	COORDENADA ESTE	COORDENADA SUR	T.AMB. °C	T.AGUA °C	Velocidad (m/s)	Ancho del río (m)	Profundidades del río (m)	Nitrito	рН	OXIGENO (mg/L)	CO2 (mg/L)	DUREZA (mg/L)	TRANSPARENCIA (NTU)	Caudal (m3/s)
PAMPILLA	16/10/2019	11:00	351495	8548755	25.5	23.1	0.46	20.0	0.42	0.0	8.44	9.0	10	239.40	0.90	3.81
LUCUMO	16/10/2019	15:12	355396	8549090	25.1	26.8	0.36	17.0	0.24	0.0	8.19	9.0	10	256.50	1.08	1.47
FORTALEZA	17/10/2019	10:06	358533	8550047	24.6	21.7	0.71	16.5	0.40	0.0	8.29	8.0	5	256.50	1.06	4.71
ALTO HUNGARA	17/10/2019	12:45	362981	8551469	29.4	26.0	0.48	28.0	0.34	0.0	8.48	9.0	10	239.40	0.88	4.66
CONCON	17/10/2019	16:00	365020	8552682	24.9	24.5	0.75	18.0	0.42	0.0	8.45	9.0	10	239.40	1.25	5.75
CALTOPA	18/10/2019	09:18	366642	8555256	25.3	21.8	1.05	24.0	0.42	0.0	8.44	8.0	10	222.30	1.71	10.61
SOCSI	18/10/2019	11:42	369518	8558703	28.1	23.2	1.90	23.0	0.49	0.0	8.42	8.0	15	256.50	1.61	21.32
PAULLO	18/10/2019	14:42	3772920	8560702	27.0	23.2	1.05	39.0	0.51	0.0	8.37	8.0	15	222.30	1.69	20.80
LUNAHUANA	18/10/2019	16:54	374791	8566056	23.7	22.1	1.27	33.5	0.46	0.0	8.33	8.0	10	222.30	1.72	19.43
CATAPALLA	19/10/2019	15:36	380864	8572141	23.7	22.2	1.03	33.5	0.65	0.0	8.32	8.8	10	222.30	1.52	22.22
JACAYITA	19/10/2019	12:48	382828	8574906	25.2	21.0	1.54	29.0	0.62	0.0	8.43	8.4	10	239.40	1.87	27.66
PACARAN	19/10/2019	10:45	385505	8577888	28.6	19.6	1.25	40.0	0.50	0.0	8.41	9.9	10	256.50	1.21	25.00
HUAGIL	19/10/2019	09:15	387357	8578133	23.4	19.0	1.45	29.0	0.68	0.0	8.42	9.4	5	222.30	1.05	28.68
ZUÑIGA	19/10/2019	12:15	389452	8577617	20.2	18.8	0.73	42.5	0.42	0.0	8.50	8.1	10	239.40	1.19	12.88
MACHURANGA	23/10/2019	11:30	391360	8580414	25.1	25.8	1.90	22.5	0.70	0.0	9.50	8.1	10.3	239.40	1.26	30.14
SAN JUANITO	22/01/2019	15:45	394362	8580261	24.4	23.5	0.85	15.0	0.40	0.0	8.60	9.8	10	205.20	1.14	5.11
PIEDRA COCA	22/10/2019	13:50	397270	8580150	29.2	24.4	1.60	13.0	0.39	0.0	8.10	10.8	5	205.20	1.32	8.11
LA TOLVA	22/10/2019	11:15	400749	8582693	25.2	21.7	0.67	17.5	0.42	0.0	8.40	9.9	8	205.20	1.07	4.94
HUALLAMPI	22/10/2019	09:41	401629	8583188	23.6	20.4	0.68	17.5	0.38	0.0	8.30	9.9	5	205.20	1.07	4.59
TACUASIMONTE	21/10/2019	15;24	402759	8585752	33.5	24.6	0.68	15.5	0.24	0.0	8.28	9.4	10	205.20	1.21	2.56
CANCHAN	21/10/2019	13:55	400851	8586154	30.4	21.2	0.63	15.5	0.43	0.0	8.30	8.7	10	205.20	1.27	4.26
ESCARILLA	21/10/2019	11:55	399447	8587465	28.4	21.5	0.67	14.0	0.32	0.0	8.2	8.2	10	188.10	1.18	3.04
PUENTE CHAVIN	21/10/2019	09:54	397486	8591178	24.9	20.1	0.59	15.5	0.40	0.0	8.54	9.1	15	239.40	1.18	3.65
CHICHICAY	20/10/2019	15:05	396727	8593055	27.0	22.0	0.68	15.0	0.43	0.0	8.57	8.8	5	239.40	1.09	4.38
CAPILLUCAS	20/10/2019	13:29	395327	8597239	27.1	20.5	1.57	25.0	0.42	0.0	8.59	9.3	5	222.30	1.39	16.47
PUENTE PUTINZA	20/10/2019	11:25	395972	8599502	28.7	18.8	1.78	22.5	0.61	0.0	8.56	9.8	10	239.40	1.49	24.40
CALACHOTA	20/10/2019	10:01	394187	8601969	27.5	16.8	1.43	34.0	0.49	0.0	8.5	9.8	15	239.40	1.09	23.80

Tabla 46. Resultados de los Muestreos Biométricos

	10000		uiiuuo.		3 IVI	MUSITUS L	Biométricos	
NTERVALOS	LONG. TOTAL	LONG. CEFALOTORAX	PESO TOTAL	PESO ABDOMEN	SEXO	ESTADO DE MADUREZ	SEXO	ESTACIÓN
	mm.	mm.	gr.	gr.	GENO	•	MACHO HEMBRA	2017/01011
20-24								
25-29	25	7	0.3	0.1	М	1	1	FORTALEZA
25-25	29	9	0.5	0.2	н	1	1	CONCON
	28	10	0.4	0.2	М	1	1	PAULLO
	28	10	0.4	0.2	M	1	1	PACARAN
							3 1	
30-34	33	11	0.7	0.4	н	1	1	PAMPILLA
	31	10	0.6	0.3	М	1	1	PAMPILLA
	33	10	0.8	0.4	M	1	1	LUCUMO
	33	10	0.8	0.4	Н	1	1	LUCUMO
	32 30	9	0.5 0.7	0.2	M M	1	1	LUCUMO
	32	10	0.7	0.4	M	1	1	FORTALEZ/
	32	12	0.7	0.4	M	1	1	FORTALEZ
	30	10	0.5	0.4	Н	2	1	CALTOPA
	32	10	0.7	0.5	Н	1	1	SOCSI
	30	10	0.6	0.3	M	1	1	SOCSI
	30 32	10 10	0.6 0.9	0.4	M M	1	1	SOCSI
	32	10	10	0.5	M	1	1	LUNAHUAN
	32	10	0.7	0.5	М	1	1	LUNAHUAN
	33	12	0.8	0.4	Н	1	1	PACARAN
	33	10	0.7	0.3	Н	1	1	PACARAN
	32	10	0.6	0.3	н	1	1	JACAYA
	32 32	10 10	0.6 0.6	0.4	M M	1	1	JACAYA
	32 30	10	0.6	0.4	Н	1	1 1	CATAPALL
	34	11	1.0	0.5	м	1	1	HUAGIL
	30	10	0.5	0.3	М	1	1	HUAGIL
	34	10	0.7	0.4	М	1	1	ZUÑIGA
	30	9	0.6	0.4	М	1	1	ZUÑIGA
	32	10	0.5	0.3	М	1	1	ZUÑIGA
	34	12	0.9	0.5	м	1	1	S.JUANITO
35-39	38	13	1.3	0.7	Н	1	1	PAMPILLA
	37	12	1.0	0.5	М	1	1	PAMPILLA
	38	12	1.1	0.7	Н	1	1	PAMPILLA
	38 36	14 14	1.2 1.2	0.6 0.7	M	1	1	LUCUMO
	38	16	1.1	0.6	M	1	1	LUCUMO
	37	10	1.2	0.7	M	1	1	LUCUMO
	38	13	1.5	0.6	M	1	1	LUCUMO
	36	12	1.0	0.6	Н	1	1	LUCUMO
	36	11	1.2	0.6	М	1	1	LUCUMO
	38 38	13 13	1.0 1.4	0.5 0.7	H M	1	1	FORTALEZ FORTALEZ
	38	12	1.0	0.7	M	1	1	FORTALEZ
	37	13	1.2	0.7	М	1	1	FORTALEZ
	37	12	1.1	0.6	М	1	1	FORTALEZ
	35 38	12 12	1.0 1.4	0.5 0.6	M H	1	1	FORTALEZ.
	37	13	1.4	0.6	M	1	1	A.HUNGAR
	38	14	1.5	0.8	Н	1	1	A.HUNGAR
	37	13	1.1	0.6	Н	1	1	A.HUNGAR
	37	12	1.0	0.5	M	1	1	A.HUNGAR
	35	12	1.0	0.2	М	1	1	CONCON
	35 38	12 15	0.8 1.6	0.5 0.9	M	1	1	CONCON
	38	12	1.0	0.9	M	1	1	CONCON
	38	14	1.2	0.7	M	1	1	CONCON
	38	12	1.2	0.6	М	1	1	CONCON
	35	12	0.9	0.5	М	1	1	CONCON
	37	13	1.0	0.5	M	1	1	CONCON
	37 39	10 13	1.0 1.2	0.5 0.6	H M	1	1	CONCON
	35	12	1.2	0.6	н	1	1	CALTOPA
	37	13	1.0	0.5	м	1	1	CALTOPA
	35	12	0.8	0.5	М	1	1	CALTOPA
	35	10	0.8	0.6	Н	1	1	CALTOPA
	35	10	0.8	0.5	Н	1	1	CALTOPA
	38 36	13 12	1.2 0.8	0.6 0.6	H M	1	1	SOCSI
	36	12	0.9	0.6	н	1	1	SOCSI
	38	12	1.0	0.6	н	1	1	SOCSI
	35	10	0.7	0.5	M	1	1	SOCSI
	38	12	1.3	0.7	М	1	1	PAULLLO
	38	13	1.2	0.6	M	1	1	PAULLLO
	38 35	12 11	1 0.9	0.6 0.5	M M	1	1	PAULLLO LUNAHUAN
	35 36	11	0.9	0.6	M	1	1	LUNAHUAN
	37	13	1.2	0.8	н	1	1	PACARAN
	37	14	1	0.5	М	1	1	PACARAN
	38	13	1.1	0.5	Н	1	1	JACAYA
	38	13	1	0.6	М	1	1	JACAYA
	37	11	1.1	0.5	н	1	1	JACAYA
	37 35	12 12	1.1 0.8	0.6 0.4	M	1	1	CATAPALL
	35 35	12 10	0.8	0.4	H M	1	1	CATAPALL
	37	13	1	0.5	м	1	1	HUAGIL
		12	0.9	0.5	М	1	1	HUAGIL
	38	12	0.0	0.5				

i									
40-44	44	16	2.3	1.1	Н	1		1	PAMPILLA
	42	15	1.6	0.9	Н	1		1	PAMPILLA
	43	15	1.9	0.9	M	1	1		PAMPILLA
	43	15	1.6	0.9	M	1	1		PAMPILLA
	40	14	1.1	0.7	M	1	1		PAMPILLA
	40	15	1.5	0.7	Н	1		1	PAMPILLA
	42	15	1.7	0.9	M	1	1		LUCUMO
	40	16	1.8	0.7	M	1	1		LUCUMO
	42	15	1.6	0.9	Н	1		1	LUCUMO
	40	15	1.6	0.9	M	1	1		LUCUMO
	40	15	1.2	0.8	M	1	1		LUCUMO
	43	15	1.7	0.9	M	1	1		FORTALEZA
	44	16	1.7	0.9	М	1	1		FORTALEZA
	43	15	1.6	0.7	M	1	1		FORTALEZA
	44	15	2.5	1.2	М	1	1		A.HUNGARA
	42	14	1.8	1.0	Н	1		1	A.HUNGARA
	40	15	1.8	1	Н	1		1	A.HUNGARA
	44	15	1.7	1	н	1		1	A.HUNGARA
	42	14	1.5	0.8	н	1		1	A.HUNGARA
	42	14	1.9	1.1	н	1		1	A.HUNGARA
	42	15	1.6	0.8	M	1	1		A.HUNGARA
	42	16	1.7	0.9	н	1		1	CONCON
	44	15	1.7	0.9	н	1		1	CONCON
	40	20	1.4	0.9	н	1		1	CONCON
	40	11	1.6	0.7	M	1	1	'	CONCON
	40	15	1.5	0.9	н	1	,	1	CONCON
					M	1			
	43	15 16	1.7	1.0	***	1	1		CONCON
	40	16	1.1	0.6	М		1	4	CONCON
	43	15	1.8	1.1	н	1		1	CALTOPA
	40	14	1.4	0.9	M	1	1		CALTOPA
	40	15	1.5	1.0	М	1	1		CALTOPA
	4	15	1.6	0.9	М	1	1		CALTOPA
	42	14	1.5	0.8	М	1	1		CALTOPA
	42	15	1.9	1.1	M	1	1		SOCSI
	43	15	1.8	0.9	M	1	1		SOCSI
	42	15	1.6	0.9	Н	1		1	SOCSI
1	43	15	1.8	0.9	M	1	1		SOCSI
	42	15	1.7	1.0	Н	1		1	SOCSI
	40	15	1.4	0.7	M	1	1		SOCSI
	42	15	1.8	1.0	M	1	1		PAULLO
	40	15	1.5	0.9	M	1	1		PAULLO
	43	15	1.7	0.9	M	1	1		PAULLO
	41	13	1.8	1.0	M	1	1		PAULLO
	42	13	1.8	0.9	M	1	1		PAULLO
	42	15	1.7	0.9	Н	1		1	LUNAHUANA
	40	14	1.4	0.7	Н	1		1	PACARAN
	43	15	1.6	0.9	н	1		1	JACAYA
	40	13	1.5	0.8	M	1	1		JACAYA
	42	15	1.5	0.8	н	1		1	JACAYA
	42	15	1.7	0.9	M	1	1		JACAYA
	40	13	0.8	0.5	н	1		1	JACAYA
	44	15	2.1	1.2	н	1		1	CATAPALLA
	42	15	1.3	0.7	н	1		1	CATAPALLA
	40	13	1.3	0.7	M	1	1		CATAPALLA
	40	13	1.3	0.6	н	1		1	CATAPALLA
	44	15	1.8	0.9	M	1	1		HUAGIL
I	40	15	1.8	0.9	н	1		1	HUAGIL
1	40	14	0.9	0.5	н	1		1	HUAGIL
	40	13	1.3	0.5	н	1		1	HUAGIL
	40	15	1.1	0.6	M	1	1	'	ZUÑIGA
					***	1			
	42	16	1.7	0.9	M		1		MACHURANGA
	42	15	1.2	0.6	M	1	1		MACHURANGA
	43	17	1.7	1.0	M	1	1		S.JUANITO
	43	17	1.9	1.1	Н	1		1	TACUASIMONTE
45-49	48	18	2.7	1.4	Н	2		1	PAMPILLLA
	48	18	2.5	1.1	M	1	1		PAMPILLLA
	45	17	2.3	1.0	М	1	1		PAMPILLLA
	45	17	2.4	1.0	М	1	1		PAMPILLLA
	45	16	1.8	0.9	М	1	1		PAMPILLLA
	45	15	1.8	1.0	Н	4		1	PAMPILLLA
	47	15	2.2	1.1	Н	1		1	LUCUMO
	47	18	2.6	1.3	Н	1		1	FORTALEZA
1	47	15	2.0	1.1	M	1	1		FORTALEZA
	46	16	2.2	1.1	Н	1		1	FORTALEZA
	47	17	2.4	1.1	н	1		1	FORTALEZA
	45	15	2.3	1.1	Н	1		1	FORTALEZA
	48	17	2.5	1.3	M	1	1		FORTALEZA
	47	17	2.1	1.1	н	1		1	FORTALEZA
	45	16	1.9	1.0	M	1	1		FORTALEZA
	45	15	2.0	1.1	н	1		1	FORTALEZA
	46	16	2.6	1.4	Н	2		1	A.HUNGARA
	48	18	3.0	1.2	М	1	1		A.HUNGARA
	47	17	2.3	1.2	н	1		1	A.HUNGARA
	45	15	2.2	1.1	н	1		1	A.HUNGARA
	47	17	2.5	1.3	н	1		1	A.HUNGARA
	47	17	2.2	1.3	н	1		1	A.HUNGARA
	47	20	3.0	1.6	н	2		1	CONCON
	45	20	2.6	1.3	н	2		1	CONCON
	48	18	2.7	1.2	н	1		1	CONCON
	47	15	1.7	0.8	Н	2		1	CONCON
	48	18	2.5	1.3	M	1	1		CALTOPA
	45	17	2.3	1.3	M	1	1		CALTOPA
	45	15	1.9	1.0	н	1	1	1	CALTOPA
1	45 45	15 17	1.9 2.0	1.0	н	1		1	CALTOPA
							4	1	
	45 45	15 15	2.3 2.1	1.2	M M	1 1	1		CALTOPA
Į	40	15	2.1	1.0	M	1	1		CALTOPA

1										
		47	17	2.8	1.9	Н	1		1	CALTOPA
		45	16	2.1	1.2	Н	1		1	CONCON
		45	15	2.2	0.9	М	1	1		CONCON
		47	18	2.5	1.0	Н	1		1	CONCON
		46	15	2.0	1.0	Н	1		1	CONCON
		48	13	1.3	0.8	Н	1		1	CONCON
		48	17	2.5	1.4	н	1		1	SOCSI
		47	17	2.6	1.2	M	1	1		SOCSI
		46	16	2.2	1.3	M	1	1		SOCSI
		47	16	2.1	1.3	Н	1		1	SOCSI
		47	15	2.2	1.3	M	1	1		SOCSI
		47	16	2.2	1.3	Н	1		1	SOCSI
		48	17	2.7	1.5	Н	1		1	LUNAHUANA
		47	15	2.1	1.2	M	1	1		LUNAHUANA
		45	15	2.1	1.1	M	1	1		LUNAHUANA
		48	20	2.6	1.2	Н	1		1	PACARAN
		47	18	1.9	0.9	M	1	1		PACARAN
		48	17	2.6	1.3	Н	2		1	JACAYA
		47	17	2.0	1.1	M	1	1		JACAYA
		45	15	1.6	0.9	М	1	1		JACAYA
		48	15	2.5	1.2	M	1	1		CATAPALLA
		48	17	2.7	1.3	M	1	1		CATAPALLA
		47	15	2.2	1.0	н	1		1	CATAPALLA
		45	15	2.2	1.1	M	1	1		CATAPALLA
		45	17	3.0	1.0	М	2	1		MACHURANGA
		48	17	2.6	1.3	M	1	1		MACHURANGA
		48	17	2.9	1.4	M	2	1		HUALLAMPI
-								63	60	1
-								63	JU	ı
١										
-	50-54	54	20	4	2	Н	4		1	PAMPILLA
١		54	18	3.6	1.7	н	2		1	PAMPILLA
-		54	19	3.8	1.9	н	3		1	PAMPILLA
-										
-		54	20	3.7	1.6	Н	4		1	PAMPILLA
-		54	20	3.7	1.7	M	2	1		PAMPILLA
١		50	17	3.7	1.3	Н	1		1	PAMPILLA
-		52	18	2.8	1.5	н	1		1	PAMPILLA
		54	25	3	1.8	Н	2		1	LUCUMO
		53	22	3.4	1.8	H	2		1	LUCUMO
		52	23	3.6	2.2	M	2	1		LUCUMO
		52	17	3	1.6	Н	1		1	FORTALEZA
		54	18	3.4	1.9	Н	1		1	FORTALEZA
		52	20	3.4	1.8	Н	1		1	FORTALEZA
		50	20	2.8	1.6	Н	1		1	FORTALEZA
		54	18	3.8	1.8	М	2	1		LUCUMO
		52	22	3.7	1.6	M	1	1		LUCUMO
		52	20	3.4	1.6	Н	1		1	LUCUMO
		50	20	3.2	1.5	M	1	1		LUCUMO
		52	20	3.7	1.7	M	1	1		LUCUMO
		53	20	3.5	1.8	M	1	1		LUCUMO
		50	18	3.6	1.8	H	2		1	A. HUNGARA
		54	20	3.8	1.7	Н	2		1	A. HUNGARA
		50	18	3.1	1.4	M	1	1		A. HUNGARA
		50	20	3.5	1.7	M	1	1		A. HUNGARA
		53	20	4.3	1.7	H	2		1	CONCON
		53	22	4.5	1.7	M	2	1		CONCON
		53	20	4.1	1.8	M	2	1		CONCON
							2			
		53	20	0.5	1.6	M		1		CONCON
		53	20	3.8	1.6	Н	2		1	CONCON
		50	18	3.1	1.6	M	2	1		CONCON
		50	20	2.6	1.4	Н	1		1	CONCON
		50	20	2.8	1.2	н	1		1	CONCON
١										
		52	20	3.3	1.9	Н	1		1	CONCON
١		50	17	3.5	1.6	M	1	1		CONCON
١		53	20	3.5	1.9	Н	1		1	CALTOPA
١		52	18	3.4	1.9	н	1		1	CALTOPA
١										
١		54	20	3.9	2.0	Н	1		1	SOCSI
١		52	18	3.2	1.0	M	1	1		SOCSI
١		52	18	3.4	1.6	M	1	1		SOCSI
١		52	18	3.6	1.8	Н	1		1	PAULLO
١		52	18	3.1	1.6	н	1		1	PAULLO
١										
١		50	18	2.9	1.4	M	1	1		PAULLO
١		50	18	2.6	1.4	Н	1		1	PAULLO
١		50	18	3.1	1.6	Н	1		1	PAULLO
١		52	18	2.9	1.5	н	1		1	PAULLO
١										
-		53	18	3.5	1.8	Н	2		1	PAULLO
١		52	18	3.5	1.8	M	1	1		LUNAHUANA
١		50	18	3.0	1.5	M	1	1		LUNAHUANA
١		53	20	3.9	1.9	н	1		1	LUNAHUANA
-		50	18	3.0	1.6	M	1	1		LUNAHUANA
-										
١		52	20	2.9	1.6	M	1	1		LUNAHUANA
١		50	18	2.8	1.6	Н	1		1	LUNAHUANA
-		50	17	2.5	1.4	М	1	1		LUNAHUANA
١										
١		53	22	3.6	1.7	М	1	1		PACARAN
- 1		52	18	2.9	1.5	M	1	1		PACARAN
		32			1.6	M	2	1		JACAYA
J		52	20	3.3						
		52	20			DA.		1		JACAYA
		52 50	20 18	2.9	1.5	M	1	1		JACAYA
		52 50 54	20 18 30	2.9 1.2	1.5 4.6	М	1	1		HUAGIL
		52 50	20 18	2.9	1.5					HUAGIL ZUÑIGA
		52 50 54	20 18 30	2.9 1.2	1.5 4.6	М	1	1		HUAGIL
		52 50 54 52 54	20 18 30 20 21	2.9 1.2 3.1 3.7	1.5 4.6 1.7 1.9	M M	1 1 1	1	1	HUAGIL ZUÑIGA MACHURANGA
		52 50 54 52 54 54	20 18 30 20 21 20	2.9 1.2 3.1 3.7 3.4	1.5 4.6 1.7 1.9 1.8	M M M	1 1 1 2	1	1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA
		52 50 54 52 54 54 54	20 18 30 20 21 20 20	2.9 1.2 3.1 3.7 3.4 3.3	1.5 4.6 1.7 1.9 1.8 1.7	м м м н	1 1 1 2 2	1 1 1	1 1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA
		52 50 54 52 54 54	20 18 30 20 21 20	2.9 1.2 3.1 3.7 3.4	1.5 4.6 1.7 1.9 1.8	M M M	1 1 1 2	1		HUAGIL ZUÑIGA MACHURANGA MACHURANGA
		52 50 54 52 54 54 52 50	20 18 30 20 21 20 20 20	2.9 1.2 3.1 3.7 3.4 3.3 2.1	1.5 4.6 1.7 1.9 1.8 1.7	м м м н н	1 1 1 2 2	1 1 1		HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA
		52 50 54 52 54 54 52 50 52	20 18 30 20 21 20 20 18	2.9 1.2 3.1 3.7 3.4 3.3 2.1 3.7	1.5 4.6 1.7 1.9 1.8 1.7 1.1	M M M H H	1 1 1 2 2 1	1 1 1	1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA LA TOLVA
		52 50 54 52 54 54 52 50	20 18 30 20 21 20 20 20	2.9 1.2 3.1 3.7 3.4 3.3 2.1	1.5 4.6 1.7 1.9 1.8 1.7	м м м н н	1 1 1 2 2	1 1 1		HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA
		52 50 54 52 54 54 52 50 52	20 18 30 20 21 20 20 18	2.9 1.2 3.1 3.7 3.4 3.3 2.1 3.7	1.5 4.6 1.7 1.9 1.8 1.7 1.1	M M M H H	1 1 1 2 2 1	1 1 1	1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA LA TOLVA
	55-59	52 50 54 52 54 54 52 50 52	20 18 30 20 21 20 20 18	2.9 1.2 3.1 3.7 3.4 3.3 2.1 3.7	1.5 4.6 1.7 1.9 1.8 1.7 1.1	M M M H H	1 1 1 2 2 1	1 1 1	1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA LA TOLVA
	55-59	52 50 54 52 54 54 52 50 52 51	20 18 30 20 21 20 20 18 20	2.9 1.2 3.1 3.7 3.4 3.3 2.1 3.7 3.0	1.5 4.6 1.7 1.9 1.8 1.7 1.1 1.9	M M M H H M	1 1 2 2 1 2 2	1 1 1	1	HUAGIL ZUÑIGA MACHURANGA MACHURANGA MACHURANGA MACHURANGA LA TOLVA LA TOLVA

i		56	21	4.8	2.1	М	2	1		PAMPILLA
		58	21	5.8	2.7	н	4		1	PAMPILLA
		57	20	4.7	2.5	н	4		1	PAMPILLA
		55	22	4.7	1.7	M	2	1		PAMPILLA
		57	20	4.4	2.3	Н	4		1	PAMPILLA
		57	26	3.5	1.9	н	2		1	LUCUMO
		55	21	5.1	2.0	M	2	1		LUCUMO
		55	20	3.4	1.7	M	2	1		LUCUMO
		55	22	3.9	2.0	н	2		1	LUCUMO
		55	20	3.6	1.9	Н	1		1	LUCUMO
		55	20	5.1	2.1	M	1	1	1	LUCUMO
		57	20	4.1	2.1	Н	2		1	FORTALEZA
		55	20	4.2	2.2	Н	1		1	FORTALEZA
		57	20	3.9	2.1	M	1	1		FORTALEZA FORTALEZA
		56	20	3.7	1.8	M	1	1		-
		55	18	2.7	1.5	Н	1		1	FORTALEZA
		58	21	4.6	2.4	Н	2		1	A.HUNGARA
		55 58	20	4.1 5.0	2.1	н	2		1	A.HUNGARA
							2			A.HUNGARA
		58	20	5.5	2.1	Н	2		1	A.HUNGARA
		55 55	20	4.0 3.7	2.0	M H	2	1	1	A.HUNGARA A.HUNGARA
		56	18	3.0	1.6	Н	2		1	A.HUNGARA
		56	20	4.0	1.9	Н	2		1	A.HUNGARA
		58 58	23 20	5.0 3.8	1.9	H M	2		1	CONCON
								1		
		57	20	4.2	2.3	М	1 2	1		CALTOPA CONCON
		57 57	20	4.5 2.8	1.2	M H	2	1	1	CONCON
		58	23	5.4	2.5	Н	2		1	CALTOPA
		58	22	4.9	2.5	Н	2		1	CALTOPA
1		58	21	5.2	2.4	Н	1		1	CALTOPA
		55	20	4.2	2.3	Н	1		1	SOCSI
		55	20	3.7	2.1	H	1		1	SOCSI
		55	20	4.3	2.3	Н	1		1	SOCSI
		57	20	3.7	1.9	Н	1		1	SOCSI
		57	20	4.4	2.3	H	1		1	PAULLO
		56	22	3.9	2.0	H	1		1	LUNAHUANA
		55	20	3.4	1.8	М	1	1		LUNAHUANA
		58	22	4.2	2.3	Н	1		1	PACARAN
		56	25	3.4	1.9	Н	1		1	PACARAN
		55	20	3.7	2.0	Н	2		1	JACAYA
		58	22	4.9	2.5	Н	2		1	JACAYA
		55	20	3.8	2.2	Н	2		1	JACAYA
		57	20	4.3	2.3	Н	1		1	CATAPALLA
		58	20	5.0	2.7	Н	1		1	CATAPALLA
		56	20	4.2	1.8	M	1	1		CATAPALLA
		58	22	4.6	2.5	М	1	1		HUAGIL
		55	20	3.3	1.8	Н	4		1	ZUÑIGA
		55 58	20 22	3.3 4.3	1.8 2.4	H M	4 2	1	1	ZUÑIGA LA TOLVA
		55 58 59	20 22 20	3.3 4.3 4.0	1.8 2.4 2.2	H M M	4 2 1	1 1	1	ZUÑIGA LA TOLVA S.JUANITO
		55 58 59 58	20 22 20 20	3.3 4.3 4.0 4.9	1.8 2.4 2.2 2.6	H M M	4 2 1	1		ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI
		55 58 59 58 58	20 22 20 20 22	3.3 4.3 4.0 4.9 4.2	1.8 2.4 2.2 2.6 2.2	H M M M	4 2 1 1 3	1 1 1	1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN
		55 58 59 58	20 22 20 20	3.3 4.3 4.0 4.9	1.8 2.4 2.2 2.6	H M M	4 2 1	1 1		ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI
		55 58 59 58 58	20 22 20 20 22	3.3 4.3 4.0 4.9 4.2	1.8 2.4 2.2 2.6 2.2	H M M M	4 2 1 1 3	1 1 1	1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN
		55 58 59 58 58	20 22 20 20 22	3.3 4.3 4.0 4.9 4.2	1.8 2.4 2.2 2.6 2.2	H M M M	4 2 1 1 3	1 1 1		ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN
		55 58 59 58 58 58 55	20 22 20 20 20 22 20	3.3 4.3 4.0 4.9 4.2 3.6	1.8 2.4 2.2 2.6 2.2 2.0	H M M M H	4 2 1 1 3 2	1 1 1	1 72	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA
60	0-64	55 58 59 58 58 58 55 56	20 22 20 20 20 22 20 22 20	3.3 4.3 4.0 4.9 4.2 3.6	1.8 2.4 2.2 2.6 2.2 2.0	H M M M H M	4 2 1 1 3 2	1 1 1 1 1 49	1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARILLA PAMPILLA
60	0-64	55 58 59 58 58 58 55 60 60 62	20 22 20 20 20 22 20 22 20	3.3 4.3 4.0 4.9 4.2 3.6	1.8 2.4 2.2 2.6 2.2 2.0	H M M M H M	4 2 1 1 3 2	1 1 1	1 72	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILLA
60	0-64	55 58 59 58 58 55 55 60 62	20 22 20 20 22 22 20 23 25 25 26	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7	H M M H M H H M H	4 2 1 1 3 2 3 2 4	1 1 1 1 1 49	1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA
60	0-64	55 58 59 58 58 55 60 62 62 62	20 22 20 20 20 22 20 23 25 26 23	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0	H M M M H M M	4 2 1 1 3 2 3 2 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 72	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA
60	0-64	55 58 59 58 58 55 55 60 62 62 61 60	20 22 20 20 22 20 22 20 23 25 26 23 25	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5	H M M H H M H H H H M M	4 2 1 1 3 2 2 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA
60	0-64	55 58 59 58 58 55 56 60 62 62 61 60 62	20 22 20 20 22 20 22 20 23 25 26 23 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4	H M M H M H H M M M M M M M M M M M M M	4 2 1 1 1 3 2 2 3 2 4 4 4 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA
60	0-64	55 58 59 58 58 55 56 60 62 62 61 60 62 62	20 22 20 20 22 20 22 20 23 25 26 23 25 25 26 23 25 25 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3	H M M H H H M M M H H H H M M M H H H H	4 2 1 1 1 3 2 2 5 4 4 4 4 2 2 2 3 3 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA
60	0-64	55 58 58 58 58 55 60 62 62 61 60 62 62 60 62	20 22 20 20 22 22 20 23 25 26 23 25 25 25 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2 6.7	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3	H M M H M M H H M M M H H M M M H H M	4 2 1 1 1 3 2 2 E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA
60	0.64	55 55 56 57 58 58 55 55 55 56 56 56 56 56 56 56 56 56 56	20 22 20 20 22 22 20 23 25 26 26 22 25 26 22 25 26 22 26 22 24 24	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA
60	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 20 20 22 22 22 23 25 25 26 23 25 25 25 25 25 25 25 25 25 25 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.7	H M M H H H M M H M M H M M H M M H M M H M M H M M H M M H M M H M	4 2 1 1 1 3 3 2 2 5 4 4 4 4 2 2 2 3 3 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA LA PAMPILA LA PAMPILA LA LICUMO
60	0-64	55 55 59 59 59 56 55 55 55 56 60 62 62 62 62 63 62 63 62 63 62 63 62 63 62 63 62 62 62 62 62 62 62 62 62 62 62 62 62	20 22 20 20 22 22 22 20 23 25 26 26 25 26 25 26 26 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1	H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H H M M H M H M M H M H M M H M M H M M H M M H M M H M M H M M H M M H M M H M M H M M M H M M M H M M M H M M M H M M M M H M	4 2 1 1 1 3 2 2 5 3 2 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA LOUINO LUCUMO LUCUMO
60	0.64	55 55 55 55 55 55 55 56 56 56 56 56 56 5	20 22 20 20 20 22 22 20 23 23 25 26 23 25 26 22 22 24 25 22 22 22 22 23 23 24 25 26 26 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.0 6.5 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6	H M M M H H H M M H H H H H H H H H H H	4 2 1 1 1 3 2 2 3 3 2 4 4 4 2 2 2 3 3 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LOUINO LUCUMO LUCUMO LUCUMO
60	0-64	55 56 58 59 59 58 58 58 55 55 56 60 62 62 62 62 62 62 62 62 62 62 62 62 62	20 22 20 20 22 22 22 23 25 25 26 22 25 25 25 22 25 25 25 22 25 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6 2.9	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LA PAMPILA LA PAMPILA LA LUCUMO LUCUMO LUCUMO LUCUMO
60	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 20 20 22 22 20 23 25 26 26 22 25 25 26 22 25 26 22 22 22 22 22 22 22 22 22 23 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.6 2.7 3.1 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
60	0-64	55 55 55 55 55 55 55 56 56 56 56 56 56 5	20 22 22 20 20 22 22 20 20 22 20 20 20 2	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO
60	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 20 20 22 22 22 23 25 25 26 23 25 25 25 22 25 25 22 25 25 22 22 25 25	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5 5.5 5.0 6.1 5.6	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.5 2.6 2.7 3.0 2.7 3.0 2.7 3.0 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LOUNO LUCUMO
60	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 23 25 24 22 22 22 22 22 22 22 22 22 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.5 5.5 5.5 5.5 5.6 5.3	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.9 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA LUCUMO
63.	0-64	555 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 22 20 20 25 25 25 25 22 25 22 22 22 22 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3	H M M H H H H H H H H H H H H M M M	4 2 2 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO
60.0	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 20 20 22 20 22 20 23 25 26 23 25 26 22 25 25 22 25 22 22 22 22 22 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.6 2.7 3.1 2.6 2.6 2.6 3.0 3.0 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 4 4 4 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO FORTALEZA
61.	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 25 25 22 22 22 22 23 22 22 23 22 22 23 22 22	3.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.6 6.7 5.5 5.7 5.5 5.7 5.7 5.8 5.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.9 2.8 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO FORTALEZA FORTALEZA
63.	0.64	555 559 559 558 559 550 60 60 62 62 61 61 60 62 62 60 60 64 64 62 60 60 60 63 63 63 66	20 22 22 20 20 22 22 20 20 25 25 26 23 25 25 22 25 22 22 22 23 22 22 22 23 22 22 21 18 22 22 25 22 25 22 25 22 25 24 25 22 25 25 25 25 25 25 25 25 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	1.8 2.4 2.2 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 3.0 2.7 3.0 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.8 3.3 3.3 3.0 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO FORTALEZA FORTALEZA FORTALEZA
60.0	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 20 22 20 25 26 23 25 26 22 25 22 22 22 22 22 22 22 22 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.7 5.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.7 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.7	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA
61.	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 25 25 22 22 22 22 22 25 25 25 25	3.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.5 6.7 5.5 5.0 6.1 5.5 5.6 5.3 2.7 5.9 7.5 5.3 5.7 3.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO FORTALEZA FORTALEZA FORTALEZA A HUNGARA
63.	0-64	555 559 559 558 559 550 60 60 62 62 61 60 62 62 60 64 64 62 60 60 60 60 60 60 60 60	20 22 22 20 20 22 22 20 20 20 27 22 20 20 20 20 20 20 20 20 20 20 20 20	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.3 2.6 2.9 2.8 3.1 2.7 3.3 3.3 3.0 2.6 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA
60.	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 20 25 26 22 25 22 22 22 22 22 22 22 22 22 22 22	3.3 4.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.2 6.7 5.2 6.7 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.3 5.7 3.8 5.7 3.8 5.3 5.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.0 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.8 2.9 2.9 2.8 2.9 2.9 2.8 2.9 2.9 2.8 2.9 2.9 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 4 4 4 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA
61.	0-64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 20 25 26 22 25 22 22 25 24 22 22 25 24 24 22 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 6.5 5.5 5.5 5.6 7 5.8 6.8 7 5.9 7 5.8 6.4	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 1 1 1 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO CORCON CORCON CONCON CONCON
63.	0.64	55 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 22 20 25 26 22 25 22 22 22 22 22 22 22 22 25 24 25 22 22 22 22 22 22 22 22 22 22 22 22	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 2.4 2.3 3.0 2.7 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.3 3.3 3.0 2.6 2.7 2.8 2.4 2.7 2.8 2.4 2.7	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA CONCON CONCON
60.	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 20 25 26 23 25 26 22 22 22 22 22 22 22 22 25 25 22 22 25 25	3.3 4.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.5 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.2 2.0 2.7 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.8 2.4 2.7 2.8 2.4 2.7 2.6 2.7 2.8 2.7 2.8 2.7 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CONCON CONCON
61.	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 20 25 26 22 25 26 22 22 25 26 22 26 22 26 22 26 26 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	3.3 4.3 4.0 4.9 4.2 3.6 5.9 6.9 6.0 6.7 5.7 5.2 6.7 6.5 5.5 5.5 5.0 6.1 5.6 5.3 2.7 5.9 7.5 5.3 5.7 3.8 6.4 6.0 6.0 6.4 6.0 6.5 6.5 6.7 6.5 6.5 6.7 6.6 6.6 6.7 6.6 6.8 6.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.8 2.4 2.7 2.6 0.6 0.7	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO CUCUMO CONCON CONCON CONCON CONCON CONCON
61.	0.64	55 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 22 20 25 26 22 22 22 22 22 25 24 25 22 22 22 22 22 25 24 25 22 22 22 22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 2.4 2.3 3.0 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 2.4 2.7 2.6 2.7 2.8 2.4 2.7 2.6 0.7 2.7	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO AUCUMO LUCUMO CUCOMO CONCON CONCON CONCON CONCON CONCON CONCON CONCON
65.5	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 26 25 25 25 25 25 25 25 26 22 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	3.3 4.3 4.3 4.0 4.9 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.5 6.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 5.3 2.7 5.9 7.5 5.3 5.7 3.8 6.4 6.0 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.9 6.9	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.7 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.0 2.7 3.1 2.7 2.6 0.7 2.8 2.7 2.8 2.4 2.7 2.8 2.7 2.8 2.9 2.8 3.3 3.0 2.6 2.7 3.1 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 3 3 2 2 4 4 4 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA A CONCON CONCON CONCON CONCON CONCON
61.	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 20 22 20 20 20 20 20 20 20 2	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 5.3 2.7 5.9 5.3 2.7 5.9 6.4 6.0 6.8 5.7 6.8 6.8 6.8 6.8 6.8 6.8 6.9 6.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 2.4 2.3 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.7 3.0 2.6 2.7 2.7 3.5 2.5 2.4 2.7 2.7 3.5 2.5 2.4 2.7 2.7 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO CUCUMO CONCON CON
63.	0.64	555 559 559 558 559 558 550 60 60 60 60 60 60 60 60 60 60 60 60 60	20 22 22 20 20 22 22 20 25 26 22 22 22 22 25 26 22 25 26 22 25 26 22 25 26 22 26 22 26 22 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 3.0 2.7 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.3 3.0 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.8 2.4 2.7 0.6 0.7 2.7 3.5 2.5 2.5	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO CUCUMO LUCUMO CONCON CONCONCONCONCONCONCONCONCONCONCONCONCONC
60.0	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 26 25 25 25 25 25 25 25 25 25 25 25 25 25	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 5.3 5.7 3.8 6.4 6.0 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.2 2.0 2.7 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.0 2.7 3.1 2.7 2.6 2.9 2.8 3.3 3.0 2.7 3.1 3.3 3.0 2.6 2.7 2.6 2.7 2.8 2.7 2.6 0.7 2.8 2.8 2.7 2.8 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 3 3 2 2 4 4 4 2 2 2 3 3 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA A HUNGARA CONCON CALTOPA CALTOPA
61.	0.64	555 556 557 558 558 558 558 558 558 558 558 558	20 22 22 20 20 22 20 20 20 20 20 20 20 2	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.0 6.5 6.7 6.5 5.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 6.2 6.3 6.7 6.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 3.7 3.0 2.5 2.4 2.3 3.0 2.7 3.0 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.7 3.0 3.0 3.0 3.0 3.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	H M M M H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO CONCON CALTOPA CALTOPA
63.	0.64	55 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 22 25 26 22 22 22 25 26 22 25 25 25 25 25 25 25 26 25 26 25 26 25 26 26 26 27 27 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 5.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 6.2 7 5.9 7.5 5.9 7.5 6.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 3.0 2.7 3.1 2.7 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.3 3.0 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 3.5 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO CUCUMO CONCON CONCO
60.0	0.64	55 55 56 56 56 56 56 56 56 56 56 56 56 5	20 22 22 20 22 22 25 25 25 25 25 25 25 25 25 26 22 22 22 25 25 25 25 25 25 25 25 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 5.3 5.7 3.8 6.4 6.0 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.2 2.0 2.7 3.0 2.7 3.1 2.6 2.9 2.8 3.1 2.7 2.6 2.9 2.8 3.0 2.7 3.1 3.0 2.7 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	H M M H H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 3 3 2 2 4 4 4 2 2 2 3 3 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVIN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO CUCUMO CUCUMO CONCON C
61.	0.64	55 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 20 20 20 20 20 20 20 2	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.0 6.5 6.7 6.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 6.2 6.3 6.1 6.6 6.6 6.7 6.7 6.7 6.9 6.1 6.1 6.6 6.7 6.7 6.7 6.9 6.1 6.1 6.1 6.2 6.2 6.3 6.3 6.3 6.4 6.0 6.1 6.6 6.8 6.8 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 3.1 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.5 2.5 2.5 2.5 2.5 3.5 3.1 3.0 3.3 3.3 3.2 2.5 2.5 3.5 3.1 3.0 3.3 3.3 3.2 2.5 2.5 3.5 3.1 3.0 3.3 3.3 3.2 2.5 2.5 3.5 3.1 3.0 3.3 3.3 3.2	H M M M H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 3 2 2 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO CUCOMO CONCON CO
60	0.84	55 55 55 55 55 55 55 55 55 55 56 60 62 62 62 62 62 62 62 62 62 62 62 62 62	20 22 22 20 20 22 25 26 22 22 22 22 25 25 25 25 25 25 25 25 25	3.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.7 6.0 6.5 5.5 5.5 5.5 5.5 5.6 6.7 5.5 5.5 5.6 6.7 5.6 6.7 6.7 6.7 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	1.8 2.4 2.2 2.6 2.2 2.0 2.8 2.6 2.7 3.0 2.5 2.4 2.3 2.4 2.3 2.4 2.3 3.0 2.6 2.9 2.8 3.1 2.7 2.6 1.3 3.3 3.0 2.6 2.7 2.8 2.4 2.7 0.6 0.7 2.7 3.5 2.5 3.5 3.1 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	H M M M H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 2 2 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S.JUANITO HJALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO LUCUMO CONCON CONC
60.	0.64	55 55 55 55 55 55 55 55 55 55 55 55 55	20 22 22 20 20 22 20 20 20 20 20 20 20 2	3.3 4.3 4.3 4.0 4.9 4.2 3.6 6.9 6.9 6.0 6.7 5.7 5.2 6.0 6.5 6.7 6.5 5.5 5.5 5.5 5.5 5.6 6.1 5.6 6.2 6.3 6.1 6.6 6.6 6.7 6.7 6.7 6.9 6.1 6.1 6.6 6.7 6.7 6.7 6.9 6.1 6.1 6.1 6.2 6.2 6.3 6.3 6.3 6.4 6.0 6.1 6.6 6.8 6.8 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	1.8	H M M M H H H H H H H H H H H H H H H H	4 2 2 1 1 1 3 3 2 2 3 3 2 2 4 4 4 4 2 2 2 3 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZUÑIGA LA TOLVA S. JUANITO HUALLAMPI CHAVN ESCARLLA PAMPILLA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA PAMPILA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO CUCUMO CUCOMO CONCON CO

1	60	22	5.1	2.5	M	1	1		SOCSI
	62	20	5.2	2.8	Н	1		1	SOCSI
	64	23	6.9	3.2	M	2	1		SOCSI
	60	24	5.1	2.7	Н	1		1	PAULLO
	62	22	5.8	3.0	н	2		1	LUNAHUANA
	63	22	6.3	3.1	Н	2		1	LUNAHUANA
	60	22	5.5	2.9	н	2		1	LUNAHUANA
	61	22	5.4	2.9	M	2	1		LUNAHUANA
	63	22	4.9	2.7	M	1	1		LUNAHUANA
	61	23	5.1	3.0	Н	1		1	PACARAN
	62	24	5.1	2.6	Н	1		1	PACARAN
	63	23	6.1	3.4	M	2	1		JACAYA
	61	23	6.2	2.8	Н	1		1	JACAYA
	60	22	5.4	2.6	Н	2		1	JACAYA
	62	22	6.1	3.0	Н	2		1	CATAPALLA
	62	25	6.0	3.0	Н	2		1	CATAPALLA
	64	25	6.0	3.0	Н	2		1	CATAPALLA
	62	23	5.8	3.0	Н	2		1	CATAPALLA
	62	22	5.9	2.9	Н	2		1	CATAPALLA
	62	23	6.5	3.2	M	1	1		CATAPALLA
	62	23	6.5	3.5	Н	1		1	CATAPALLA
	62	23	5.8	3.0	Н	1		1	CATAPALLA
	60	20	5.9	3.1	Н	1		1	CATAPALLA
	62	22	4.8	2.7	Н	1		1	HUAGIL
	63	23	6.0	3.0	М	2	1		ZUÑIGA
	63	23	5.9	2.9	Н	2		1	MACHURANGA
1	60	22	5.1	2.6	н	3		1	MACHURANGA
1	60	23	5.0	2.6	M	1	1		MACHURANGA
1	63	23	5.9	3.0	Н	2		1	TACUASIMONTE
1	63	22	7.1	3.3	Н	3	4	1	TACUASIMONTE
1	64 60	25 22	6.0 4.9	2.9 2.4	M H	2 2	1	1	TACUASIMONTE TACUASIMONTE
1	60 64	22 20	4.9 3.3	2.4 1.6	н	2		1	TACUASIMONTE
1	62	20	9.4	4.7	H M	2	1	'	HUALLAMPI
1	60	20	6.0	3.2	M M	2	1		HUALLAMPI
1	62	20	5.3	2.8	M M	1	1		HUALLAMPI
1	63	23	5.3	3.0	Н	2		1	ESCARILLA
	63	23	6.0	3.1	н	2		1	ESCARILLA
	60	22	5.1	2.7	н.	2		1	ESCARILLA
	00		0.1			-			LOGITHLE
65-69	68	27	8.7	3.9	М	2	1		PAMPILLA
03-03	65	23	9.4	3.5	M	2	1		PAMPILLA
	69	25	8.9	3.8	M	3	1		PAMPILLA
	68	25	8.9	4.2	н	4		1	PAMPILLA
	68	25	7.9	4.2	н	4		1	PAMPILLA
	66	25	7.2	3.3	н	3		1	PAMPILLA
	65	20	7.2	3.6	М	2	1		PAMPILLA
	66	22	5.4	2.6	н	4		1	PAMPILLA
	68	27	9.8	4.1	М	2	1		LUCUMO
	67	27	9.7	3.2	M	2	1		LUCUMO
	66	25	7.9	3.2	М	2	1		LUCUMO
	66	35	7.9	3.5	М	2	1		LUCUMO
	66	25	7.1	3.5	н	2		1	LUCUMO
	65	25	9.8	3.8	М	2	1		LUCUMO
	65	25	7.0	3.3	н	2		1	LUCUMO
	65	25	7.0	3.6	н	2		1	LUCUMO
	65	23	8.7	3.3	Н	2		1	LUCUMO
	66	25	6.5	3.8	Н	2		1	LUCUMO
	65	25	7.3	3.0	M	2	1		LUCUMO
	65	25	8.0	3.5	н	2		1	LUCUMO
	67	28	7.2	4.0	M	2	1		FORTALEZA
	65	25	9.0	3.3	M	2	1		FORTALEZA
	68	25	7.8	3.6	M	2	1		FORTALEZA
1	67	36	8.4	3.8	M	2	1		FORTALEZA
1	65	25	9.6	3.7	М	2	1		FORTALEZA
1	65	27	7.4	3.4	М	2	1		FORTALEZA
1	67	27	8.9	3.2	М	2	1		FORTALEZA
1	65	24	6.1	3.3	Н	1		1	FORTALEZA
1	65	25	7.2	3.8	М	2	1		A HUNGARA
1	65	25	8.0	3.0	Н	2		1	A HUNGARA
1	65	24	6.1	3.3	Н	2		1	A HUNGARA
1	65	25	6.4	3.1	Н	2		1	A HUNGARA
1	65	25	7.6	3.5	M	2	1		A HUNGARA
1	65	25	6.3	3.3	Н	2		1	A HUNGARA
1	65	25	6.8	3.3	Н	2		1	A HUNGARA
1	65	25	7.7	3.2	Н	2		1	A HUNGARA
1	65	20	3.8	2.0	Н	2		1	A HUNGARA
	67	25	7.3	3.3	Н	2		1	CONCON
1	67	25	7.5	3.8	М	2	1		CONCON
1	65 65	23 25	7.5 7.4	3.3	н	1 2		1	CONCON
1	66	25 25	7.4	3.2	M M	2	1	1	CONCON
1	65	25 25	6.3	3.5	M M	2	1		CONCON
1	68	25	9.7	3.7	M	2	1		CONCON
1	67	25	3.6	3.2	Н	2		1	CONCON
1	66	25	6.9	3.2	н	2		1	CONCON
1	68	25	8.4	3.7	M	2	1		CONCON
1	66	25	7.2	3.7	Н	2		1	CONCON
1	66	25	9.4	3.1	M	2	1		CONCON
1	68	25 25	7.0	3.4	Н	2		1	CONCON
1	67	30	6.8	3.4	н	2		1	CONCON
1	68	25	10.5	3.8	M	2	1		CONCON
1	67	26 26	8.7	3.5	M	2	1		CONCON
1	65	20	6.7	3.5	M	2	1		CONCON
1	67	22	4.7	2.1	M	2	1		CONCON
1	67	25	4.6	3.5	M	2	1		CALTOPA
1	68	25	7.5	3.4	M	2	1		CALTOPA
1	65	25	6.8	3.4	н	3		1	CALTOPA
1						-			

	68	24	7.8	4.1	Н	2		1	SOCSI
	68	25	7.7	4.0	н	2		1	SOCSI
	68	25	8.1	4.1	Н	2		1	SOCSI
	67	23	8.5	4.5	н	2		1	SOCSI
	68	28	8.8	4.0	М	2	1		SOCSI
	67	24	7.7	3.9	н	2		4	SOCSI
								1	
	68	25	7.5	3.6	M	2	1		SOCSI
	68	26	7.6	3.9	н	2		1	SOCSI
	67	28	10.3	3.9	Н	2		1	PAULLO
	68	25	8.4	3.7	Н	2		1	PAULLO
	65	25	7.5	3.6	Н	2		1	PAULLO
	65	23	6.3	3.3	Н	2		1	PAULLO
	65	24	6.6	3.8	н	2		1	PAULLO
	66	24	7.1	3.4	н	2		1	PAULLO
	68	25	7.6	3.9	н	2		1	LUNAHUANA
	65	25	7.3	3.4	М	2	1		LUNAHUANA
	66	25	6.8	3.7	н	2		1	JACAYA
	68	25	7.8	3.3	н	2		1	JACAYA
	68	28	8.7	4.0	M	2	1		JACAYA
							1		
	67	25	7.5	3.8	н	2		1	JACAYA
	67	25	7.9	3.8	Н	2		1	JACAYA
	67	25	6.7	3.8	н	2		1	JACAYA
	67	20	4.3	2.0	М	2	1		JACAYA
	65	35	7.2	6.8	M	2	1		CATAPALLA
	67	25	7.5	3.8	Н	2		1	CATAPALLA
	67	26	6.7	3.3	Н	2		1	CATAPALLA
	65	25	6.6	3.4	H	2		1	CATAPALLA
	65	23	6.1	3.2	Н	1		1	CATAPALLA
	66	25	5.9	3.3	н	3		1	MACHURANGA
	66	24	6.8	3.1	Н	3		1	MACHURANGA
	68	27	6.2	3.5	М	2	1		LA TOLVA
	66	26	7.5	3.6	м	2	1		P.COCA
	67	25	7.5	3.8	н	2	'	1	P.COCA P.COCA
		25 24	7.6		н				
	67			3.9		4		1	P.COCA
	67	25	7.6	3.6	Н	2		1	P.COCA
	68	26	8.8	3.2	M	2	1		TACUASIMONTE
	65	24	7.8	4.1	Н	4		1	TACUASIMONTE
	66	25	6.5	3.4	Н	2		1	TACUASIMONTE
	67	35	8.2	4.2	Н	2		1	HUALLAMPI
	69	27	9.0	4.2	M	2	1		HUALLAMPI
	68	22	8.6	3.5	M	2	1		HUALLAMPI
	68	26	7.6	4.0	Н	2		1	HUALLAMPI
	65	25	7.6	3.8	н	2		1	HUALLAMPI
	68	26	8.0	3.8	M	3	1		HUALLAMPI
	66	22	4.0	2.0	М	2	1		HUALLAMPI
	65	25	6.6	2.6	н	2		1	CHAVIN
	68	25	7.0	3.8	н.	3		1	CHAVIN
	68	25	6.8	3.5	н	2		1	CHAVIN
	00	23							
	co	25	7.0	2.2	ш				
	68	25	7.0	3.3	Н	2		1	ESCARILLA
	68 66	25 25	7.0 6.8	3.3 3.4	н	2		1	ESCARILLA ESCARILLA
								1	
							69		
	66	25	6.8	3.4	Н	2	•	1	ESCARILLA
70-74	73	25	6.8	3.4	Н	3	1	1	ESCARILLA PAMPILLA
70-74	73 70	25 30 28	6.8 18.9 14.1	3.4 4.3 3.7	M M	2 3 2	•	1	ESCARILLA PAMPILLA PAMPILLA
70-74	73	25 30 28 30	6.8	3.4 4.3 3.7 4.2	M M M	2 3 2 2	1	1	PAMPILLA PAMPILLA PAMPILLA
70-74	73 70	25 30 28	6.8 18.9 14.1	3.4 4.3 3.7	M M	2 3 2	1 1	1	ESCARILLA PAMPILLA PAMPILLA
70-74	73 70 74	25 30 28 30	18.9 14.1 11.8	3.4 4.3 3.7 4.2	M M M	2 3 2 2	1 1 1	1	PAMPILLA PAMPILLA PAMPILLA
70-74	73 70 74 73	25 30 28 30 30	18.9 14.1 11.8 12.8	4.3 3.7 4.2 4.3	M M M M	2 3 2 2 2	1 1 1	1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA
70-74	73 70 74 73 73	25 30 28 30 30 28	18.9 14.1 11.8 12.8 12.9	4.3 3.7 4.2 4.3 4.4	M M M M	2 3 2 2 2 2	1 1 1 1	1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA
70-74	73 70 74 73 73	25 30 28 30 30 28 28	18.9 14.1 11.8 12.8 12.9	4.3 3.7 4.2 4.3 4.4 4.0	M M M M M	3 2 2 2 2 2	1 1 1 1 1	1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA
70.74	73 70 74 73 73 70 73	25 30 28 30 30 28 28 35	18.9 14.1 11.8 12.8 12.9 11.1 12.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4	M M M M M	2 3 2 2 2 2 2 2 2	1 1 1 1 1 1	1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO
70-74	73 70 74 73 73 70 73 70	25 30 28 30 30 28 28 35 28	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8	M M M M M M	3 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1	1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO
70-74	73 70 74 73 73 70 73 70 73	25 30 28 30 30 28 28 35 28 28	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4	M M M M M M M	3 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO
70.74	73 70 74 73 73 70 73 70 73 70	25 30 28 30 30 28 28 35 28 28 28	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4 4.4	M M M M M M M M M	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO
70-74	73 70 74 73 70 73 70 73 70 73 71 71	25 30 28 30 30 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.6 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.4 4.0 4.3	M M M M M M M M M	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 119	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
70-74	73 70 74 73 73 70 73 70 73 71 71 72 70	25 30 28 30 30 28 28 35 28 28 27 28 28 28	189 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4 4.0 4.3	M M M M M M M M M M M	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 119	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
70.74	73 70 74 73 73 70 73 70 73 71 71 71 72 70 73	25 30 28 30 30 30 28 28 28 28 28 28 28 27 28 28 27	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7	3.4 4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.4 4.0 4.3 4.0 4.8	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 119 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO
70-74	73 70 74 73 75 70 73 70 73 70 73 70 73 70 73 70 71 71 72 70 74 70	25 30 28 30 30 28 35 28 28 28 28 27 28 28 28 27 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.4 4.0 4.3 4.4 4.0 4.3 4.4 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M H H	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO
70-74	73 70 74 73 70 73 70 73 70 73 71 71 71 71 72 70 74	25 30 28 30 30 28 28 28 27 28 28 27 30 30 28 28 28 27 30 30 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.1 4.2	M M M M M M M M M M H H H	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1	1 119 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO
70-74	73 70 74 73 73 70 73 70 73 71 71 72 70 74 70 72 70	25 30 28 30 30 30 28 28 28 28 28 27 20 30 26 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.4 4.0 4.3 4.4 4.0 4.3 4.0 4.3 4.1 4.1 4.1 4.2 4.4	M M M M M M M M M M H H H H	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO FORTALEZA
70-74	73 70 74 73 70 73 71 71 72 70 72 72 73 73	25 30 30 28 30 30 28 28 28 28 28 28 27 28 28 28 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 6.6 10.8 9.7 8.5 8.8 12.5 12.6	4.3 3.7 4.2 4.3 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.4 4.1 4.2 4.4 4.4	M M M M M M M M M H M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCU
70.74	73 70 74 73 70 73 70 73 70 74 75 70 72 72 72 72 73 72	25 30 28 30 30 28 35 28 28 27 27 30 26 30 30 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 8.5 8.8 12.5 12.6 9.7	4.3 3.7 4.2 4.3 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.4 4.4 4.4 4.0	M M M M M M M M H H H H M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO FORTALEZA FORTALEZA
70-74	73 70 74 73 73 70 73 70 73 71 71 72 70 74 70 72 72 72 72 73	25 30 28 30 30 30 28 28 28 28 28 28 27 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 3.8 4.4 4.0 4.3 4.0 4.3 4.0 4.4 4.0 4.3 4.0 4.4 4.0 4.4 4.0 4.0 4.4 4.0 4.0 4.0	M M M M M M M M M H M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA
70-74	73 70 74 73 70 73 70 73 71 71 72 70 71 72 70 72 72 72 72 73	25 30 30 28 30 30 28 28 28 28 28 27 28 28 27 30 26 30 30 30 30 30 30 30 25	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.0 4.1 4.2 4.4 4.4 4.0 4.4 4.0 4.4 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M H H H H M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 72 73 70 70 77 70 77 70 70 70 70 70 70 70 70	25 30 30 30 30 38 28 28 28 28 28 27 28 27 30 30 30 30 30 30 30 26 27	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 8.8 12.5 12.6 9.2 12.8 10.0 9.1	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.4 4.0 4.3 4.0 4.1 4.2 4.4 4.0 4.6 4.5 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LIJCUMO LIJCUMO LIJCUMO LIJCUMO LIJCUMO LIJCUMO LIJCUMO LIJCUMO LIJCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA
70-74	73 70 74 73 73 70 73 70 73 71 71 72 70 74 70 72 72 72 72 73 74 70 72 72 72 73	25 30 30 38 38 28 38 28 28 28 28 27 30 30 30 30 30 30 30 30 26 27 28	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
70-74	73 70 74 73 75 70 73 71 71 72 70 71 72 72 72 72 72 73 74 70 72 73 74 70 72 72 73 74 70 72 73 74 75 76 76 76 77 77 77 77 77 77 77 77 77 77	25 30 30 28 30 30 28 35 28 28 28 27 28 28 27 30 26 30 30 30 27 27 28 28 27 27 30 26 27 28 28 27 28 28 28 27 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 27 30 26 27 28 28 28 27 28 28 28 27 27 30 26 27 28 28 28 28 27 28 28 28 28 27 27 28 28 28 28 28 27 27 28 28 28 28 28 27 27 28 28 28 28 28 27 27 28 28 28 28 28 27 27 28 28 28 28 28 28 27 27 28 28 28 28 28 27 27 28 28 28 28 28 28 27 27 28 28 28 28 28 27 27 30 26 27 28 28 28 28 28 27 28 28 28 28 28 27 28 28 28 28 27 27 30 26 26 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 73 72 74 70 70 71 70 71 70 70 71 70 70 71 70 70 71 70 70 71 70 70 71	25 30 30 30 30 38 28 28 28 28 27 28 27 30 30 30 30 30 26 27 28 26 26 26 26 26 26 26 26 26 26 26 26 26	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 8.8 12.5 12.6 12.8 10.0 11.1 13.1 10.1 8.0	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.0 4.3 8 4.4 4.0 4.8 4.1 4.0 4.8 4.1 4.0 4.8 4.1 4.0 4.6 4.6 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M H H M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
70-74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 72 72 72 73 70 71 70 71 70 70 71 70 70 71 70 70 71 70 70 71 70 70 71	25 30 30 28 30 30 30 32 28 28 28 28 28 27 30 30 30 30 30 30 30 26 27 28 26 26 27 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.0 4.0 4.1 4.0 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTA
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 73 72 74 70 70 71 70 71 70 70 71 70 70 71 70 70 71 70 70 71 70 70 71	25 30 30 30 30 38 28 28 28 28 27 28 27 30 30 30 30 30 26 27 28 26 26 26 26 26 26 26 26 26 26 26 26 26	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 8.8 12.5 12.6 12.8 10.0 11.1 13.1 10.1 8.0	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.0 4.3 8 4.4 4.0 4.8 4.1 4.0 4.8 4.1 4.0 4.8 4.1 4.0 4.6 4.6 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M H H M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 72 72 72 73 70 71 70 71 70 70 71 70 70 71 70 70 71 70 70 71 70 70 71	25 30 30 28 30 30 30 32 28 28 28 28 28 27 30 30 30 30 30 30 30 26 27 28 26 26 27 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.0 4.0 4.1 4.0 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTA
70-74	73 70 74 73 70 73 70 73 71 71 72 70 72 73 72 74 70 70 77 74 77 77 70 70 70 77 71 70 70 70 71 71 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71	25 30 30 28 30 30 28 28 28 28 28 27 28 28 27 30 26 30 30 30 26 27 28 26 27 28 20 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 12.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 74 70 70 71 70 70 71 70 70 71 70 70 71 70 71 70 70 71	25 30 30 30 30 30 32 8 35 28 28 28 27 28 30 30 30 30 30 26 27 28 28 26 30 30 30 30 26 27 28 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30	189 14.1 11.8 12.9 11.1 12.8 10.4 9.8 10.4 9.7 9.6 10.8 12.5 12.5 12.6 9.2 12.8 10.0 11.3 10.1 8.0 11.5 10.0 12.3	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.4 4.0 4.6 4.1 4.2 4.4 4.0 4.6 4.1 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A HUNGARA A HUNGARA A HUNGARA
70-74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 72 72 72 74 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 38 38 28 28 28 28 28 27 30 30 30 30 26 27 28 26 26 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.1	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.6 4.5 4.0 4.4 4.0 4.4 4.0 4.4 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA A HUNGARA A HUNGARA
70-74	73 70 74 73 70 73 70 73 71 71 72 70 72 72 72 74 76 77 70 77 70 77 70 77 70 70 70 71 70 70 70 71 70 70 70 71 70 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 28 30 30 28 35 28 28 28 27 28 20 30 30 26 27 27 30 26 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 12.9 19.1 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.0 12.3 10.0 10.9	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.5 4.0 4.5 4.0 4.6 4.5 4.0 4.4 4.0 4.4 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LU
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 74 70 70 71	25 30 30 30 30 30 32 8 35 28 28 28 27 28 30 30 30 30 30 26 27 28 26 30 30 30 30 30 26 27 28 28 28 28 29 27 30 30 30 30 30 30 30 30 30 30 30 30 30	189 14.1 11.8 12.9 11.1 12.8 10.4 9.8 10.4 9.7 9.6 10.8 12.5 12.5 12.6 10.0 11.3 10.1 11.3 10.1 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.6 4.5 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A HUNGARA
70-74	73 70 74 73 70 73 70 73 71 72 70 72 73 72 74 70 70 71 70 70 71 70 70 71 70 70 70 71 70 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 28 30 30 28 28 28 28 28 28 27 28 20 30 26 27 20 30 30 30 26 27 28 26 25 30 26 25 30 26 27 28 28 27 28 28 27 27 30 26 27 28 28 28 27 27 28 28 28 28 27 27 30 26 27 28 28 28 28 28 27 28 28 28 28 27 27 28 28 28 28 28 27 27 30 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.8 12.9 19.1 10.4 9.8 11.4 9.7 9.6 10.8 12.5 8.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.0 7.8 8.4	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.5 4.0 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LU
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 70 71 71 70 71 70 71 70 71 70 71 70 71 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 32 28 28 28 28 28 27 28 30 30 30 30 25 27 28 25 30 20 28 28 28 27 27 28 26 27 28 27 28 27 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 8.1 12.5 12.6 9.7 8.5 12.6 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.2 10.9 11.0 7.8 8.4 8.6	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8.4 4.4 4.0 4.3 4.0 4.8 4.1 4.2 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M H H M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA
70.74	73 70 74 73 70 73 70 73 71 71 72 70 72 72 72 73 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 30 32 35 35 36 28 28 28 28 27 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 12.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.2 10.9 11.0 12.8 8.4 8.6 10.2	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.1 4.2 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M H H H M M M M M M M	2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A HUNGARA
70-74	73 70 74 73 70 73 70 73 70 73 70 73 71 71 72 72 72 73 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 32 28 28 28 28 28 27 28 27 30 30 30 30 26 27 28 30 30 30 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.8 10.4 9.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 12.6 8.8 12.5 12.8 10.0 11.3 10.1 8.0 11.5 10.0 10.3 10.2 10.9 10.0 10.8 8.4 8.6 10.2 11.8	4.3 3.7 4.2 4.3 4.4 4.0 4.3 8 4.4 4.0 4.8 4.1 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.0 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	H M M M M M M M M M H H M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LICUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 70 71 71 70 71 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 32 28 28 28 28 28 27 28 30 30 30 30 30 25 27 28 26 30 30 30 30 27 28 28 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 8.7 8.5 8.8 12.5 12.6 9.7 8.5 12.6 10.0 11.3 10.1 8.0 11.5 10.0 12.3 10.2 10.9 11.0 7.8 8.4 8.6 10.2 11.8 8.6 10.2 11.8 8.6 10.2 11.8 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 8 4.4 4.4 4.0 4.8 4.1 4.2 4.4 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAM
70-74	73 70 74 73 70 73 70 73 71 71 72 70 74 70 72 72 73 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 28 30 30 32 28 28 28 28 28 29 30 30 30 30 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 9.7 8.5 12.6 9.2 12.8 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 12.5 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 12.3 10.1 11.5 10.0 10.0	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.3 4.0 4.4 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON CONCON CONCON CONCON
70.74	73 70 74 73 70 73 70 73 70 73 70 73 71 71 72 72 72 74 70 70 71 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 38 28 28 28 28 28 27 28 27 30 30 30 30 26 27 28 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 10.4 9.8 10.4 9.8 11.1 12.8 10.4 9.8 11.1 12.8 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	4.3 3.7 4.2 4.3 4.4 4.0 4.3 8.4 4.4 4.0 4.8 4.1 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.0 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	H M M M M M M M M M H H M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON CONCON CONCON CONCON
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 70 72 72 74 70 70 71 70 70 71 70 70 71 70 70 70 70 71 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 30 32 28 28 28 28 28 27 30 30 30 26 27 28 26 30 30 26 27 28 26 27 28 28 28 28 30 28 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 8.7 9.6 10.8 11.3 10.1 8.0 10.1 8.1 11.3 10.1 8.0 10.2 10.9 11.3 10.1 8.0 10.8 8.8 8.8 10.0 11.5 10.0 11.5 10.0 12.3 10.2 10.9 11.0 7.8 8.4 8.6 10.2 11.8 10.2 11.8 10.2 11.8 10.3 10.1 11.5 10.0 11.5 10.0 12.3 10.2 10.9 10.8 11.7	4.3 3.7 4.2 4.3 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.4 4.0 4.5 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	M M M M M M M M M M M M M M M M M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1 1	PAMPILIA PAM
70-74	73 70 74 73 70 73 71 71 72 70 74 70 72 72 73 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 328 33 35 36 28 28 28 28 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	18.9 14.1 11.8 12.8 12.9 11.1 12.8 10.4 9.8 11.4 9.7 9.6 10.8 11.5 10.0 9.1 11.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 11.5 10.0 12.3 10.1 8.0 10.	4.3 3.7 4.2 4.3 4.4 4.0 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.0 4.5 4.0 4.4 4.4 4.0 4.5 4.0 4.6 4.5 4.0 4.6 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	M M M M M M M M M M M M M M M M M M M	2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1 1	PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON CONC
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 74 70 70 71 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 32 28 28 28 28 28 27 28 27 30 30 30 30 26 27 28 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	189 14.1 11.8 12.9 11.1 12.8 10.4 9.8 10.4 9.7 9.6 10.8 11.3 10.1 11.3 10.1 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 12.3 10.2 11.0 7.8 8.4 8.6 10.2 11.8 10.2 11.9 10.8 11.7 9.0 8.1	4.3 3.7 4.2 4.3 4.4 4.0 4.3 8 4.4 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.3 4.4 4.0 4.6 4.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	H M M M M M M M M H H M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1 1	PAMPILIA LIUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON
70.74	73 70 74 73 70 73 70 73 70 73 71 71 72 70 70 72 72 74 70 70 71 70 70 71 70 70 71 70 70 70 71 71 70 70 70 70 71 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 30 328 28 28 28 28 28 27 30 26 30 30 26 27 28 26 23 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	189 141 118 129 11.1 128 104 9.8 104 9.7 9.6 108 11.3 101 11.3 101 11.5 100 11.5 100 7.8 8.4 8.6 102 11.3 10.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8	4.3 3.7 4.2 4.3 4.4 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.3 4.0 4.4 4.4 4.4 4.0 4.5 4.0 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	H M M M M M M M M M H H H M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILIA PAM
70-74	73 70 74 73 70 73 70 73 70 73 71 71 72 72 72 74 70 70 71 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	25 30 30 30 32 28 28 28 28 28 27 28 27 30 30 30 30 26 27 28 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	189 14.1 11.8 12.9 11.1 12.8 10.4 9.8 10.4 9.7 9.6 10.8 11.3 10.1 11.3 10.1 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 12.3 10.2 11.0 7.8 8.4 8.6 10.2 11.8 10.2 11.9 10.8 11.7 9.0 8.1	4.3 3.7 4.2 4.3 4.4 4.0 4.3 8 4.4 4.4 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.5 4.0 4.6 4.3 4.4 4.0 4.6 4.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	H M M M M M M M M H H M M M	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 119 1 1 1 1 1 1 1	PAMPILIA LIUCUMO FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA FORTALEZA A HUNGARA CONCON

-1		70	07	0.0	4.5				1	OAL TODA
		72	27	8.8	4.5	Н	2			CALTOPA
		72	26	9.6	4.8	Н	2		1	CALTOPA
		72	26	9.7	4.7	н	2		1	CALTOPA
		71	26	8.7	4.2	н	2		1	CALTOPA
									'	
		73	30	11.8	4.6	M	2	1		CALTOPA
		70	26	8.1	4.2	н	2		1	CALTOPA
		70	27	11.4	1.0	M	2	1		CALTOPA
		70	27	9.7	4.2	M	2	1		SOCSI
		70	26	10.4	5.0	Н	2		1	PAULLO
		70	25	9.5	4.4	н	2		1	PAULLO
		70	36	8.9	4.5	н	2		1	PAULLO
		74	27	11.6	5.3	M	2	1		PAULLO
		72	27	10.0	4.9	Н	2		1	PAULLO
		70	25	7.7	4.0	н	2		1	PAULLO
		70	27	10.3	4.4	М	2	1		PAULLO
		72	28	9.4	4.1	M	2	1		PAULLO
		73	27	9.7	5.1	н	2		1	PAULLO
		74	2.8	11.2	4.7	М	2	1		LUNAHUANA
		72	2.5	8.2	4.6	Н	2		1	LUNAHUANA
		74	2.8	10.7	5.5	н	2		1	LUNAHUANA
		70	2.5	8.7	4.5	Н	2		1	LUNAHUANA
		72	2.6	9.0	4.9	н	2		1	LUNAHUANA
		70	2.8	8.0	4.2	Н	2		1	LUNAHUANA
		73	2.5	9.0	4.6	н	2		1	LUNAHUANA
		70	2.9	9.8	4.0	M	2	1		LUNAHUANA
		74	28	9.3	4.6	M	2	1		PACARAN
		73	27	8.3	4.6	Н	2		1	PACARAN
		70	27	7.5	3.7	Н	1		1	PACARAN
		73	28	9.4	4.6	н	2		1	JACAYA
- 1		72	28	9.5	4.7	н	2		1	JACAYA
		70	28	9.2	3.9	M	2	1		JACAYA
- 1		72	28	8.3	4.5	н	2		1	CATAPALLA
- 1		73	25	9.3	4.7	н	2		1	CATAPALLA
- 1										
		70	25	7.5	4.0	Н	2		1	CATAPALLA
		70	28	9.0	4.0	M	2	1		CATAPALLA
		70	26	8.6	4.7	н	2		1	CATAPALLA
		73	28	8.8	4.7	M	2	1		HUAGIL
		70	28	7.5	4.0	M	1	1		HUAGIL
		70	27	7.8	4.0	н	2		1	HUAGIL
		72	28	10.8	5.4	н	4		1	MACHURANGA
		73	27	9.1	4.6	Н	3		1	MACHURANGA
		72	27	8.9	4.4	M	3	1		MACHURANGA
		70	25	7.5	4.1	н	2		1	MACHURANGA
					4.1					
		70	26	8.3		М	3	1		P.COCA
		72	27	9.3	4.1	M	4	1		P.COCA
		73	28	9.8	4.1	M	2	1		P.COCA
		70	27	8.4	4.1	М	4	1		P.COCA
		70	27	8.4	4.1	M	3	1		P.COCA
		72	28	8.7	4.2	н	3		1	TACUASIMONTE
		72	30	9.8	4.0	M	2	1		TACUASIMONTE
		70	28	9.3	4.7	Н	2		1	HUALLAMPI
		72	28	13.9	4.4	M	2	1		HUALLAMPI
		70	27	9.8	5.1	Н	2		1	HUALLAMPI
		72	26	9.9	4.9	М	2	1		HUALLAMPI
		70	27	9.5	4.5	M	2	1		HUALLAMPI
		74	28	9.3	4.7	н	2		1	CHICCHICAY
		73	28	9.3	4.7	н	3		1	CHAVIN
		70	25	8.0	4.0	н	3			CHAVIN
									1	
		72	28	11.3	4.4	M	2	1		ESCARILLA
		70	28	8.6	4.6	н	2		1	ESCARILLA
		73	29	10.7	5.0	н	2		1	ESCARILLA
		73	28	10.3	5.0	Н	2		1	ESCARILLA
		70	26	7.5	3.5	Н	2		1	ESCARILLA
- 1		70	28	8.7	4.3	н	2		1	ESCARILLA
- 1		70	28	8.5	4.2	Н	2		- 1	ESCARILLA
		70	28	8.3	4.4	Н	2		1	ESCARILLA
		70	27	8.1	4.1	Н	3		1	ESCARILLA
		73	27	9.3	4.6	н	3		1	CAPILLUCAS
- 1				-			-			
- 1							_			
- 1	75-79	79	37	29.6	8.2	M	3	1		PAMPILLA
		77	33	19.8	14.7	M	3	1		PAMPILLA
		76	30	14.7	5.3	М	2	1		PAMPILLA
- 1										
- 1		78	31	15.6	6.1	М	2	1		PAMPILLA
- 1		76	28	11.5	5.8	Н	4		1	PAMPILLA
		79	31	14.5	5.4	M	2	1		PAMPILLA
		75	30	17.7	3.9	М	4	1		PAMPILLA
- 1		76	30	15.2	4.3	M	2	1		PAMPILLA
- 1		75	30	11.3	5.2	н	2		1	PAMPILLA
		75	30	10.9	5.1	М	2	1		PAMPILLA
							2	1		LUCUMO
		75	30	12.5	4.4	M				
		75	30	12.9	5.3	М	2	1		LUCUMO
		75	31	13.4	5.1	М	2	1		LUCUMO
- 1		75	30	14.4	4.4	M	2	1		LUCUMO
		75	30	10.4	4.8	М	2	1		LUCUMO
		75	28	9.8	4.4	M	2	1		FORTALEZA
		78	30	11.7	5.4	М	2	1		FORTALEZA
- 1										
		76	30	14.5	5.3	М	2	1		FORTALEZA
		75	27	11.8	4.9	M	2	1		FORTALEZA
		78	33	15.8	5.5	M	2	1		FORTALEZA
		78	30	13.0	5.3	M	2	1		FORTALEZA
- 1										
- 1		77	30	13.9	5.0	M	2	1		FORTALEZA
					6.3	M	2	1		FORTALEZA
- 1		78	30	13.5	0.0					
						M	2	1		
		75	30	11.6	4.5	М	2	1		FORTALEZA
		75 75	30 30	11.6 11.2	4.5 4.9	М	2	1		FORTALEZA FORTALEZA
		75	30	11.6	4.5					FORTALEZA
		75 75	30 30	11.6 11.2	4.5 4.9	М	2	1		FORTALEZA FORTALEZA
		75 75 75 78	30 30 30 33	11.6 11.2 10.6 13.3	4.5 4.9 4.4 4.7	M M M	2 2 2	1	4	FORTALEZA FORTALEZA A.HUNGARA A.HUNGARA
		75 75 75	30 30 30	11.6 11.2 10.6	4.5 4.9 4.4	M M	2 2	1	1	FORTALEZA FORTALEZA A.HUNGARA

	75	30	14.2	4.7	M	2	1		CONCON
	78	32	16.5	5.9	M	2	1		CONCON
	78	33	13.3	4.7	M	2	1		CONCON
	77	28	9.4	4.8	Н	2		1	CONCON
	78	32	15.8	5.3	M	2	1		CONCON
	76	30	14.7	4.9	М	2	1		CONCON
	75	30	10.4	4.9	М	2	1		CONCON
	78	28	11.9	5.8	н	2		1	CALTOPA
	78	30	11.6	4.9	М	2	1		CALTOPA
	75	28	11.0	5.5	н	2		1	SOCSI
	78	30	14.0	5.6	М	2	1		SOCSI
	77	30	11.2	5.8	М	2	1		SOCSI
	75	36	9.6	5.6	н	2		1	SOCSI
	75	30	13.6	4.8	М	2	1		SOCSI
	75	30	12.1	4.9	М	2	1		SOCSI
	75	30	10.5	4.8	м	2	1		PAULLO
	76	28	11.3	5.4	н	2		1	PAULLO
	79	30	12.9	6.0	н	2		1	PAULLO
	78	30	14.5	6.1	M	2	1		PAULLO
	75	28	11.8	5.7	н	2		1	PAULLO
	78	30	13.1	5.8	М	2	1		PAULLO
	77	30	12.0	4.7	M	2	1		PAULLO
	75	28	11.1	5.4	н	2		1	PAULLO
	77	30	11.0	5.2	н	2		1	PAULLO
	78	30	13.0	6.2	н	2		1	PAULLO
		30	10.5	5.3	н	2		1	PAULLO
	75 75	28	10.5	5.3	н	2		1	PAULLO
	78	30	14.0	5.8	М	2	1		LUNAHUANA
	77	31	12.5	5.6	М	2	1		LUNAHUANA
	78	32	15.9	5.6	М	2	1	,	LUNAHUANA
1	77	30	11.4	5.6	Н	2		1	LUNAHUANA
	76	30	9.8	5.4	Н	2		1	LUNAHUANA
1	75	30	10.8	4.9	Н	2		1	PACARAN
	78	30	11.1	5.7	М	2	1		JACAYA
	76	30	12.0	5.4	М	2	1		JACAYA
	77	30	10.3	5.2	Н	2		1	JACAYA
	76	30	11.7	5.0	М	2	1		JACAYA
	75	28	9.4	4.7	М	2	1		ZUÑIGA
	75	30	10.9	4.9	Н	3		1	MACHURANGA
	76	37	12.9	6.9	Н	4		1	P.COCA
	76	28	10.7	4.9	Н	2		1	P.COCA
	78	30	11.7	6.1	Н	2		1	P.COCA
	75	28	11.5	6.4	Н	4		1	P.COCA
	78	30	11.0	5.7	Н	4		1	P.COCA
	77	28	11.7	5.8	Н	4		1	P.COCA
	78	30	12.0	5.7	Н	3		1	P.COCA
	77	30	14.7	5.1	M	2	1		TACUASIMONTE
	75	32	15.7	5.0	M	2	1		TACUASIMONTE
	78	28	11.6	5.6	Н	2		1	TACUASIMONTE
	77	30	11.2	6.1	Н	4		1	TACUASIMONTE
	78	28	10.1	5.5	Н	4		1	TACUASIMONTE
	75	28	12.8	6.5	н	2		1	HUALLAMPI
	76	30	11.0	5.6	н	2		1	HUALLAMPI
	75	27	11.3	6.0	н	2		1	HUALLAMPI
	75	30	10.1	4.8	н	3		1	HUALLAMPI
	78	30	11.1	5.5	н	2		1	CHAVIN
	77	30	11.5	5.2	н	2		1	CHAVIN
	77	30	11.6	5.6	н	2		1	CHAVIN
	77	30	11.0	5.3	н	2		1	CHAVIN
	77	28	10.7	5.2	н	2		1	CHAVIN
	77	30	11.1	5.2	н	3		1	CHAVIN
	78	30	11.6	5.2	н	3		1	CHAVIN
	75	37	9.4	6.2	н	2		1	CHAVIN
	75	28	11.4	4.4	н	4		1	CHAVIN
	75 75	28 30	9.6 11.8	5.7 6.3	H	2		1	CHAVIN
	/5	30	11.0	0.3		'			ESCARILLA
							110	98	1 l
1							110	σů	J
80-84	80	33	15.6	5.6	М	3	1		PAMPILLA
00-04	82	35	16.3	5.8	M	2	1		LUCUMO
	84	33	15.5 17.7	6.1	M M	2 2	1		LUCUMO
	83	30		7.2					FORTALEZA
	82	32	17.4	6.7	M	2	1		FORTALEZA
	82	33	16.7	6.5	M	2	1		A.HUNGARA
	82	33	14.4	6.3	М	2	1		A.HUNGARA
	80	33	15.7	5.9	М	2	1		A.HUNGARA
	80	34	14.9	5.3	М	2	1		A.HUNGARA
	83	32	17.8	6.7	М	2	1		A.HUNGARA
	82	34	16.2	6.3	М	2	1		A.HUNGARA
	83	34	13.9	5.5	М	2	1		A.HUNGARA
	82	30	14.9	6.6	М	2	1		CONCON
	80	33	12.5	5.8	М	2	1		CONCON
1	80	30	13.5	5.3	М	2	1		CONCON
1	80	20	2.9	1.4	Н	1		1	CONCON
	84	34	9.9	7.3	М	2	1		CALTOPA
	80	30	17.9	6.0	M	2	1		CALTOPA
	82	34	14.2	6.4	M	1	1		CALTOPA
	80	32	12.8	5.5	М	2	1		CALTOPA
	83	30	12.8	6.2	M	1	1		CALTOPA
	81	30	13.1	7.2	Н	2		1	SOCSI
	80	30	13.8	7.0	н	2		1	SOCSI
	84	34	17.1	7.6	М	2	1		SOCSI
	82	34	18.4	7.2	М	2	1		SOCSI
1	84	34	20.3	7.8	М	2	1		SOCSI
1	80	32	15.2	5.8	М	2	1		SOCSI
1	80	30	11.0	5.5	М	2	1		PAULLO
1	84	35	17.6	7.0	М	2	1		PAULLO

ì	80	32	15.8	5.7	М	3	1		PAULLO
	80	30	16.3	7.1	н	2	Į.	1	PAULLO
	80	32	13.0	5.0	М	2	1		PAULLO
	80	32	16.6	5.8	М	2	1		PAULLO
	80	30	13.0	6.3	н	2		1	PAULLO
	82	30	15.4	6.9	н	2		1	LUNAHUANA
	82	33	15.8	6.6	M	2	1		LUNAHUANA
	82	33	16.2	6.5	М	2	1		LUNAHUANA
	83	33	17.7	6.8	M	2	1		JACAYA
	82 80	32 32	13.6 12.3	6.7 5.6	H M	2	1	1	JACAYA JACAYA
	82	30	16.0	6.7	M	2	1		CATAPALLA
	82	33	13.5	6.3	M	2	1		CATAPALLA
	80	32	14.2	6.0	М	2	1		CATAPALLA
	80	32	13.3	5.8	М	2	1		CATAPALLA
	80	32	13.4	5.8	М	2	1		CATAPALLA
	82	32	14.2	6.6	н	3 4		1	MACHURANGA MACHURANGA
	80 81	30 35	12.4 12.1	6.3 4.9	M M	4	1	1	MACHURANGA MACHURANGA
	80	32	12.6	5.8	M	2	1		LA TOLVA
	83	32	14.7	6.7	н	3		1	P.COCA
	82	30	14.2	6.9	M	2	1		P.COCA
	82	30	12.9	6.5	Н	2		1	P.COCA
	82	30	15.0	6.6	Н	3		1	P.COCA
	80	30	13.1	6.7	Н	3		1	P.COCA
	82 80	30 30	16.3 14.7	5.7 6.7	H H	4		1	P.COCA P.COCA
	80	30	13.6	6.1	н	2		1	P.COCA P.COCA
	80	32	12.8	6.1	н	3		1	P.COCA
1	82	35	14.9	6.8	M	2	1		CANCHAN
1	82	32	13.3	6.8	н	2		1	CANCHAN
1	82	32	12.9	6.5	Н	2		1	CANCHAN
1	84 82	32	14.0	6.7	н	2		1	CANCHAN
1	82 80	32 35	14.1 14.9	6.7 4.7	H M	2	1	1	TACUASIMONTE TACUASIMONTE
1	80	32	15.4	4.7	M	2	1		TACUASIMONTE
	83	33	16.7	7.7	н	2		1	HUALLAMPI
	82	32	14.2	6.9	М	3	1		HUALLAMPI
	84	34	15.0	6.3	М	2	1		HUALLAMPI
	80	33	13.5	6.2	Н	3		1	HUALLAMPI
	83	35	15.3	6.9	М	2	1		HUALLAMPI
	80	30	14.9	6.9	H H	3 2		1	CHAVIN
	84 80	32 30	12.3 12.7	5.8 6.0	н	3		1	CHAVIN CHAVIN
	82	33	14.5	6.7	М	2	1		ESCARILLA
	80	33	15.8	6.2	М	2	1		ESCARILLA
	82	35	18.1	6.0	M	2	1		ESCARILLA
	80	30	11.0	5.8	Н	2		1	ESCARILLA
	84	33	12.7	6.8	Н	2		1	CAPILLUCAS
05 00	00	20	10.6	7.0		2	4		DAMBILLA
85-89		38 35	19.6 17.0	7.0 6.2	M M	2	1		PAMPILLA PAMPILLA
85-89	88 85 85	38 35 33	19.6 17.0 15.5	7.0 6.2 6.6	M M M	2 2 2	1 1 1		PAMPILLA PAMPILLA PAMPILLA
85-89	85	35	17.0	6.2	M	2	1		PAMPILLA
85-89	85 85 85 88	35 33 35 35	17.0 15.5 18.2 24.1	6.2 6.6 6.6 7.9	M M M	2 2 2 2	1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO
85-89	85 85 85 88	35 33 35 35 35	17.0 15.5 18.2 24.1 21.6	6.2 6.6 6.6 7.9 7.0	M M M M	2 2 2 2 2	1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO
85-89	85 85 85 88 85	35 33 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5	6.2 6.6 6.6 7.9 7.0 6.6	M M M M M	2 2 2 2 2 2	1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO
85-89	85 85 88 88 85 85	35 33 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2	6.2 6.6 6.6 7.9 7.0 6.6 6.6	M M M M M	2 2 2 2 2 2 2 2	1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
85-89	85 85 88 85 85 85 86	35 33 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9	6.2 6.6 6.6 7.9 7.0 6.6	M M M M M	2 2 2 2 2 2 2 2	1 1 1 1 1		PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
85-89	85 85 88 88 85 85	35 33 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2	6.2 6.6 6.6 7.9 7.0 6.6 6.6	M M M M M M	2 2 2 2 2 2 2 2	1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO
85-89	85 85 88 85 85 86 88 88	35 33 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5	M M M M M M M	2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA
85-89	85 85 88 85 85 86 88 85 87 87 87	35 33 35 35 35 35 35 34 33 34 33	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5	M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA
85-89	85 85 88 85 86 88 86 87 87 87	35 33 35 35 35 35 35 34 33 34 34 34	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA
85-89	85 85 88 88 85 86 88 85 87 87 87	35 33 35 35 35 35 35 34 33 36 34 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA CONCON
85-89	85 85 85 88 85 86 88 85 87 87 87 86 86	35 33 35 35 35 35 36 34 33 36 34 35 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A-H-INGARA A-H-INGARA CONCON CALTOPA
85-89	85 85 88 88 85 86 88 85 87 87 87	35 33 35 35 35 35 35 34 33 36 34 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA CONCON
85-89	85 85 88 85 86 86 88 85 87 87 87 85 86 87	35 33 35 35 35 35 35 34 33 36 34 35 35 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 6.4 7.5 6.9 7.5 7.5	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA
85-89	85 85 88 88 85 86 88 85 87 87 87 87 85 86 87 87 87 85 86 85 86 88 88 85 87 87 87 87 88 86 85 88 88 88 88 88 88 88 88 88 88 88 88	35 33 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.3 6.3 7.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO AND
85-83	85 85 88 88 85 86 87 87 87 85 86 85 85 86 85 87 87 87 85 86 85 86 85 87 87 85 86 85 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.5 7.5 7.3 6.3 7.3 7.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA
65-89	85 85 85 86 88 85 86 88 85 86 88 85 86 86 86 87 87 87 87 85 86 85 85 86 85 85 85 85 85 86 88	35 33 35 35 35 36 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3	6.2 6.6 6.6 6.6 7.9 7.0 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA SOCSI
85-89	85 85 88 88 85 86 87 87 87 87 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 33.3 16.3	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALUCUMO ALUCUMO ALUCUMO CORTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA SOCSI SOCSI
85-89	85 85 85 86 88 85 86 88 85 86 88 85 86 86 86 87 87 87 87 85 86 85 85 86 85 85 85 85 85 86 88	35 33 35 35 35 36 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3	6.2 6.6 6.6 6.6 7.9 7.0 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA SOCSI
85-89	85 85 88 88 85 86 87 87 87 87 85 86 88 85 85 86 85 86 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 35 35 35 34 36 34 35 35 37 37 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 3.3 16.3 16.3 16.3 16.3 16.3 16.3	6.2 6.6 6.6 7.9 7.0 6.6 7.5 7.8 7.3 6.4 7.5 6.9 7.5 7.5 7.3 7.3 7.3 7.3 7.7 8.1	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALUCUMO LUCUMO ALUCUMO ALUCUMO CONTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOCSI SOCSI SOCSI SOCSI
85-89	85 85 88 88 85 85 86 87 87 87 87 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 35 35 36 34 34 35 35 35 35 35 36 37 37 35 35 35 36 37 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.3 16.3 17.2	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A.HUNGARA A.HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOCSI SOCSI SOCSI SOCSI PAULLO
85-89	85 85 85 85 85 85 85 85 85 85 85 85 85 8	35 33 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 17.7 17.0 20.8 18.7 16.3 16.0 17.1 121.0 17.8 20.3 18.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOLI LUNANUANA
85-89	85 85 88 88 85 86 87 87 87 85 86 85 85 85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	35 33 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 3.3 16.0 17.1 21.0 20.3 18.7 16.3 16.7 16.3 23.3 16.0 17.1 21.0 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOCSI SOCSI SOCSI SOCSI SOCSI SOCSI PAULLO LUNAHUANA LUNAHUANA
85-83	85 85 88 88 85 85 86 87 86 88 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 35 35 36 34 33 36 35 35 35 35 35 35 35 35 37 35 37 33 33 33 34 35 35 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 17.1 21.0 17.1 21.0 17.1 21.0 17.1 21.0 17.1 21.0 17.1 21.0 17.1 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A.HUNGARA A.HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOCSI SOCSI SOCSI SOCSI SOCSI PAULLO LUNAHUANA LUNAHUANA LUNAHUANA
85-89	85 85 88 88 85 86 87 87 87 85 86 85 85 85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	35 33 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 3.3 16.0 17.1 21.0 20.3 18.7 16.3 16.7 16.3 23.3 16.0 17.1 21.0 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.5 7.3 8.1 8.0 7.4 7.7 7.3 8.4 8.0 7.8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA SOCSI SOCSI SOCSI SOCSI SOCSI SOCSI SOCSI PAULLO LUNAHUANA LUNAHUANA
85-89	85 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 36 36 36 36 36 36 36 37 36 37 37 35 37 37 37 37 37 37 37 37 37 37 37 37 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 17.7 17.0 20.8 18.7 16.3 18.7 16.3 18.0 17.1 121.0 17.8 20.3 18.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CONCON CALTOPA
85-89	85 85 86 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 17.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 121.0 17.8 20.3 18.9 18.7 16.3 18.9 18.9 18.9 19.9 19.9 19.9 19.9 19.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	PAMPILIA PAMPILIA PAMPILIA PAMPILIA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CONCON CALTOPA CALTOP
85-89	85 85 88 86 87 85 85 85 85 85 85 87 89 88 88 88 85 87 87 87 85 85 85 85 85 85 85 87 87 88 88 88 88 88 88 88 88 88 88 88	35 33 35 35 36 36 37 37 35 37 37 35 34 30 36 37 37 35 37 35 37 37 35 37 37 35 37 37 35 37 37 35 37 37 35 37 37 35 37 37 35 37 37 37 37 37 37 37 37 37 37 37 37 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 18.9 16.0 17.1 21.0 20.3 18.9 16.7 17.0 20.8 18.7 16.3 23.3 23.3 23.3 23.3 24.3 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.5 7.3 8.1 8.0 7.4 8.1 8.0 7.4 8.1 8.0 7.3 8.1 8.0 7.3 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALUCUMO LUCUMO LUCUMO CALTOPA LUCATOPA CALTOPA LUCATOPA L
85-83	85 85 88 88 85 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 36 36 37 37 35 35 36 37 37 35 35 36 37 37 35 35 36 37 37 37 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 20.3 18.9 16.7 17.0 20.8 18.7 16.3 20.3 18.9 16.7 16.3 20.3 18.0 17.1 21.0 20.3 18.0 17.1 21.0 20.0 17.1 21.0 20.0	6.2 6.6 6.6 6.6 7.9 7.0 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.3 8.1 8.0 7.4 7.7 7.3 8.4 8.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA CONCON CALTOPA LUCUMO LUC
85-89	85 85 86 86 87 85 85 85 85 85 85 85 85 85 87 89 88 8 87 85 86 87 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 17.8 20.3 18.9 19.7 10.3 10.9	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.3 6.3 7.3 7.3 7.3 7.3 8.1 8.1 8.0 7.7 7.8 8.1 8.0 8.0 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CALTOPA CAL
85-89	85 85 88 88 85 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 37 37 35 36 37 37 35 35 35 35 37 37 35 35 35 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 20.3 18.9 16.7 17.0 20.8 18.7 16.3 20.3 18.9 16.7 16.3 20.3 18.0 17.1 21.0 20.3 18.0 17.1 21.0 20.0 17.1 21.0 20.0	6.2 6.6 6.6 6.6 7.9 7.0 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.3 8.1 8.0 7.4 7.7 7.3 8.4 8.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALTOPA A.H.INGARA A.H.INGARA A.H.INGARA CONCON CALTOPA LUTOPA CALTOPA CALT
85-89	85 85 86 86 87 89 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 88 87 85 88 88 88 87 85 88 88 88 87 85 88 88 88 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 18.0 17.1 21.0 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.5 7.5 7.3 8.4 8.0 7.4 7.7 7.3 8.4 8.0 7.8 8.0 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CALTOPA CAL
85-83	85 85 88 88 85 85 86 86 87 87 87 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 35 35 35 35 35 35 35 35 3	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 20.3 18.0 17.1 21.0 20.3 18.0 17.1 21.0 21.7 21.7 22.6 22.0 21.7 20.8 20.0 21.7 20.0 21.7 20.0	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 7.3 6.4 7.5 7.5 7.5 7.3 8.3 7.3 7.3 7.3 7.3 7.3 7.3 8.1 8.0 7.4 7.7 7.3 8.4 8.0 7.6 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA LUCUMO LUCUM
85-89	85 85 86 88 88 85 86 86 87 87 87 85 85 85 85 85 85 86 88 88 87 87 87 87 87 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 87 85 87 88 88 87 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 88 88 85 87 87 87 87 88 88 85 87 87 87 87 88 88 85 87 87 87 87 88 87 87 87 87 88 87 87 87	35 33 35 35 35 35 35 35 35 35 35 35 35 3	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 18.0 17.1 21.0 20.3 18.0 17.1 21.0 20.3 18.0 17.1 20.3 18.0 18.0 19.0	6.2 6.6 6.6 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 8.7 7.3 6.3 7.3 7.3 7.3 8.1 8.0 7.4 7.7 7.3 8.4 8.0 7.8 7.7 8.1 8.0 7.8 8.7 7.8 8.7 7.8 8.7 8.7 8.7 8.7 8.7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA LUCATOPA CALTOPA CALTOPA LUCATOPA CALTOPA SOCSI S
85-89	85 85 86 86 87 85 85 85 85 85 85 85 85 85 85 85 85 85	35 33 35 35 35 35 35 35 35 35 35 35 35 3	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 17.8 20.3 18.9 19.7 10.3 10.0 11.5 10.0	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 8.1 8.1 8.0 7.4 7.7 7.3 8.1 8.0 8.0 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA A HUNGARA CALTOPA CALT
85-89	85 85 86 88 85 86 87 87 87 85 88 88 85 85 87 87 85 88 88 88 85 87 87 87 87 87 87 87 87 87 87 87 87 87	35 33 35 35 35 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 20.6 20.6 20.7 16.3 20.8	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.5 7.5 7.3 8.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALTOPA CALTOPA CALT
85-89	85 85 86 86 87 87 87 85 88 88 87 87 85 86 88 87 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 87 88 88 87 87 88 88 87 87 88 88	35 33 35 35 35 35 35 35 35 35 35 35 35 3	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 18.0 17.1 21.0 20.3 18.0 17.1 20.3 18.0 17.1 20.3 18.0 17.1 20.3 18.0 18.0 19.0	6.2 6.6 6.6 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.8 8.7 7.3 6.3 7.3 7.7 8.1 8.0 7.4 7.7 7.3 8.4 8.0 6.0 6.0 6.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA A-HUNGARA A-HUNGARA A-HUNGARA CONCON CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA CALTOPA LUCATOPA CALTOPA CALTOPA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANGA S.JUANITO P.COCA
85-89	85 85 86 88 85 86 87 87 87 85 88 88 85 85 87 87 85 88 88 88 85 87 87 87 87 87 87 87 87 87 87 87 87 87	35 33 35 35 35 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 20.6 20.6 20.7 16.3 20.8	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.5 7.5 7.3 8.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO ALTOPA CALTOPA CALT
85-89	85 85 86 87 85 85 85 87 88 88 87 85 86 88 87 87 85 88 88 87 87 85 88 88 87 87 85 88 88 87 88 88 87 88 88 88 87 88 88 88	35 33 35 35 36 36 37 37 35 35 35 35 35 35 35 35 35 35 35 35 35	17.0 15.5 18.2 24.1 21.6 20.5 17.2 19.9 19.4 20.3 18.9 16.7 19.7 22.6 22.0 21.7 17.0 20.8 18.7 16.3 23.3 16.0 17.1 21.0 21.8 20.6 29.6 29.6 18.0 15.9 11.5 20.3 13.6 17.4 19.8 17.0 17.3 17.2 16.2 16.3 17.5 17.5	6.2 6.6 6.6 7.9 7.0 6.6 6.6 7.5 7.3 6.4 7.5 7.5 7.3 8.3 7.3 7.3 7.3 7.3 7.3 8.1 8.0 7.4 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMPILLA PAMPILLA PAMPILLA PAMPILLA LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO LUCUMO FORTALEZA FORTALEZA FORTALEZA A HUNGARA A HUNGARA CONCON CALTOPA

									_
	85	33	17.1	7.9	Н	2		1	P.COCA
	85	33	15.4	7.2	н	2		1	P.COCA
	85	33	13.4	6.6	н	3		1	P.COCA
	86	33	16.0	7.5	н	2		1	P.COCA
	85	32	15.5	7.8	Н	2		1	CANCHAN
	85	34	14.9	6.9	н.	2		1	TACUASIMONTE
	87	35	18.9	9.5	Н	4		1	HUALLAMPI
	85	33	16.7	7.9	Н	3		1	HUALLAMPI
	85	34	17.3	7.9	М	2	1		HUALLAMPI
	87	35	22.0	7.9	М	3	1		HUALLAMPI
	85	34	16.3	7.4	Н	3		1	HUALLAMPI
	85	34	15.6	6.5	H	4		1	HUALLAMPI
	85	30	17.1	7.6	H	2		1	CHAVIN
	85	33	15.4	6.8	н	2		1	CHAVIN
	85	33	15.3	7.0	Н	3		1	CHAVIN
	88	35	18.0	7.8	н	3		1	CHAVIN
	85	32	15.7	7.3	н	3		1	CHAVIN
	86	33	16.4	6.9	н	2		1	CHAVIN
							84	60	,
									,
90-94	92	38	24.2	8.2	М	3	1		PAMPILLA
30-34	92	37	24.8	8.4	M	2	1		PAMPILLA
	90	35	20.7	8.1	М	2 2	1		PAMPILLA
	92	38	21.8	8.1	М		1		LUCUMO
	94	38	23.9	8.3	М	2	1		LUCUMO
1	93	37	28.8	9.7	М	2	1		LUCUMO
	90	37	20.8	7.3	М	2	1		LUCUMO
	90	35	24.6	7.7	М	2	1		LUCUMO
	93	38	24.4	9.0	М	2	1		FORTALEZA
1	93	38	26.8	9.3	М	2	1		FORTALEZA
	90	38	21.6	8.1	M	2	1		A. HUNGARA
	90	37	21.9	8.5	М	2	1		A. HUNGARA
	90	38	23.0	8.4	М	2	1		A. HUNGARA
	94	42	26.3	8.6	M	2	1		A. HUNGARA
1	90	35	19.5	8.3	M	2	1		A. HUNGARA
	93	40	27.3	8.8	M	2	1		A. HUNGARA
	92	38	26.0	8.6	M	2	1		CONCON
	93	40	25.9	8.1	M	2	1		CONCON
	92	38	24.8	9.2	М	2	1		CALTOPA
	92	38	34.9	9.2	М	2	1		CALTOPA
	93	38	25.3	8.9	М	2	1		CALTOPA
	92	40	20.0	8.9	M	2	1		SOCSI
	92	37	30.5	9.7	M	2	1		PAULLO
	92	38	25.4	9.0	M	3	1		PAULLO
	90	35	23.4	8.5	M	2	1		PAULLO
	90	38	34.5	9.2	М	2	1		PAULLO
	90	37	20.3	8.9	М	2	1		LUNAHUANA
	90	38	24.0	8.5	М	2	1		LUNAHUANA
	93	38	23.6	9.4	M	2	1		JACAYA
	92	35	22.4	9.4	M	2	1		JACAYA
	90	35	19.1	8.0	M	2	1		JACAYA
	90	38	21.8	7.1	М	2	1		JACAYA
	92	37	23.4	8.3	М	2	1		CATAPALLA
	92	38	22.5	9.0	М	2	1		CATAPALLA
	93	38	22.0	9.1	М	2	1		CATAPALLA
	90	37	21.9	8.5	М	2	1		CATAPALLA
	92	35	18.4	8.8	М	2	1		CATAPALLA
	90	32	20.5	8.6	Н	2		1	CATAPALLA
	92	38	18.1	8.5	M	2	1		CATAPALLA
	94	36	20.0	9.4	M	2	1		HUAGIL
	90	37	20.7	9.0	M	2	1		HUAGIL
	91	37	18.6	8.7	M	2	1		MACHURANGA
	92	38	18.9	8.6	М	2	1		MACHURANGA
1	93	38	18.8	8.8	М	2	1		MACHURANGA
	90	35	18.8	8.9	М	2	1		S.JUANITO
	92	40	18.4	8.3	M	2	1		P.COCA
	90	35	19.4	8.8	н	3		1	P.COCA
	92	40	22.8	8.6	М	2	1		P.COCA
	90	35	17.2	7.8	н	3	'	1	P.COCA P.COCA
	92	37	20.2	9.5	н	3		1	P.COCA P.COCA
	92	35	19.5	9.5	н	3		1	P.COCA P.COCA
	90	35	20.2	10.0	н	4		1	P.COCA P.COCA
1	90	35	17.3	9.4	н	2		1	HUALLAMPI
1	90	35	20.8	10.6	Н	4		1	CHAVIN
	90	34	18.4	8.5	Н	3		1	CHAVIN
1	93	35	20.2	9.0	Н	3		1	CHAVIN
1	90	35	17.2	7.9	Н	3		1	CHAVIN
1	93	35	19.8	9.0	Н	3		1	CHAVIN
	93	35	21.4	9.0	Н	3		1	CHAVIN
	90	36	21.2	7.6	М	2	1		CHAVIN
	90	32	18.7	8.4	Н	3		1	CHAVIN
	91	35	19.5	8.6	Н	3		1	CHAVIN
	92	37	19.0	9.1	Н	3		1	CHAVIN
	90	35	17.0	9.0	н	2		1	ESCARILLA
95-99	95	40	26.8	9.9	М	2	1		LUCUMO
35-33	95	40	26.0	9.0	M	2	1		FORTALEZA
	95 95	40	26.0 19.9	9.0 8.8	M	2	1		FORTALEZA
	98	40	31.7	18.3	M	2	1		A.HUNGARA
	98	40	17.7	9.5	М	2	1		A.HUNGARA
	95	40	25.7	9.8	М	2	1		CALTOPA
	95	40	28.4	9.9	М	2	1		CALTOPA
	97	40	26.4	9.9	М	2	1		SOCSI
	97	40	30.4	10.5	М	2	1		SOCSI
	95	40	28.6	9.2	M	2	1		PAULLO
	95	38	26.3	9.0	М	2	1		PAULLO
	95	40	25.0	9.9	М	2	1		LUNAHUANA
•									•

	95	37	23.1	10.7	M	2	1	LUNAHUANA
	95	40	23.7	10.0	M	2	1	LUNAHUANA
	95	40	24.4	9.9	М	2	1	JACAYA
	98	42	29.1	10.7	M	2	1	CATAPALLA
		40				2		
	97		21.1	10.7	M		1	ZUÑIGA
	95	40	27.0	9.9	M	2	1	MACHURNGA
	95	40	26.4	12.3	M	2	1	LA TOLVA
	95	40	24.0	10.7	M	2	1	LA TOLVA
	97	42	28.4	9.6	M	2	1	P.COCA
	97	37	19.7	9.8	H	2	1	CHAVIN
	95	35	20.9	10.0	Н	3	1	CHAVIN
							68 19	
							-	-
100-104	100	40	31.1	11.1	М	3	1	FORTALEZA
	100	40	33.2	11.1	M	2	1	A. HUNGARA
	100	42	34.7	11.1	M	3	1	CONCON
1	100	40	32.2	10.4	M	2	1	CONCON
						2		CALTOPA
	104	50	43.5	15.4	M		1	
	102	42	30.0	11.4	M	2	1	CALTOPA
	100	43	33.6	11.0	M	2	1	SOCSI
	102	45	38.5	12.9	M	3	1	SOCSI
	100	40	33.4	12.1	M	2	1	SOCSI
	100	40	34.9	12.1	M	2	1	LUNAHUANA
	100	40	30.1	11.9	M	2	1	LUNAHUANA
	112	47	41.0	16.2	M	2	1	PACARAN
	104	47	40.2	15.4	M	2	1	HUAGIL
	100	45	28.9	11.4	M	2	1	HUAGIL
	103	42	27.7	15.3	M	2	1	HUAGIL
	102	43	31.3	12.3	M	2	1	HUAGIL
	100	40	22.9	10.8	н	2	1	TACUASIMONTE
		-				-		
105-109	109	48	57.1	13.2	М	4	1	PAMPILLA
103-109								
	107	45	38.9	14.5	M	3 2	1	CALTOPA
	105	45	35.5	11.7	М		1	CALTOPA
	105	45	37.1	13.5	M	2	1	CALTOPA
	105	45	36.9	12.2	M	2	1	CALTOPA
	105	43	38.3	12.6	M	2	1	SOCSI
	106	45	40.9	13.8	M	2	1	LUNAHUANA
	115	50	47.0	16.4	M	2	1	JACAYA
	115	50	47.2	16.0	M	2	1	JACAYA
	117	50	53.9	17.0	M	2	1	CATAPALLA
	115	50	48.0	16.6	M	2	1	CATAPALLA
							27 1	
								_
110-114	112	48	34.7	14.1	М	3	1	CONCON
110-114	112	40	34.1			5		
	110	40	40.7	15.0		2	4	
	112	48	49.7	15.9	М	2	1	PAULLO
	112	45	46.9	15.2	M M	2	1	PAULLO
	112 110	45 45	46.9 41.3	15.2 14.9	M M M	2	1	PAULLO LUNAHUANA
	112 110 112	45 45 46	46.9 41.3 46.8	15.2 14.9 17.2	M M M	2 2 2	1 1 1	PAULLO LUNAHUANA LUNAHUANA
	112 110	45 45	46.9 41.3	15.2 14.9	M M M	2 2 2 2	1	PAULLO LUNAHUANA
	112 110 112	45 45 46	46.9 41.3 46.8	15.2 14.9 17.2	M M M	2 2 2 2 2	1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGIL
	112 110 112 110	45 45 46 45	46.9 41.3 46.8 41.0	15.2 14.9 17.2 15.7	M M M M	2 2 2 2	1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA
	112 110 112 110 110	45 45 46 45 45	46.9 41.3 46.8 41.0 43.7	15.2 14.9 17.2 15.7 15.0	M M M M M	2 2 2 2 2	1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGIL
	112 110 112 110 110 110	45 45 46 45 45 45	46.9 41.3 46.8 41.0 43.7 32.0	15.2 14.9 17.2 15.7 15.0 14.8	M M M M M	2 2 2 2 2 2	1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGIL ZUÑIGA
115-119	112 110 112 110 110 110 110	45 45 46 45 45 45 40	46.9 41.3 46.8 41.0 43.7 32.0 22.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8	M M M M M M	2 2 2 2 2 2 2	1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUÑIGA TACUASIMONTE
115-119	112 110 112 110 110 110 110 100	45 45 46 45 45 45 40	46.9 41.3 46.8 41.0 43.7 32.0 22.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8	M M M M M M H	2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUÑIGA TACUASIMONTE CALTOPA
115-119	112 110 112 110 110 110 110 100	45 46 45 45 45 45 40 45	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3	15.2 14.9 17.2 15.7 15.0 14.8 10.8	M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUÑIGA TACUASIMONTE CALTOPA PAULLO
115-119	112 110 112 110 110 110 110 100 115 117 115	45 45 46 45 45 45 40 45 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3	M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUÑIGA TACUASIMONTE CALTOPA PAULLO PAULLO
115-119	112 110 112 110 110 110 110 100 115 117 115	45 46 45 45 45 40 45 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5	M M M M M M H	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASIMONTE CALTOPA PAULLO PAULLO LUNAHUANA
115-119	112 110 112 110 110 110 110 100 115 117 115 115	45 46 45 45 45 40 45 50 50 47 43	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA
115-119	112 110 112 110 110 110 110 100 115 117 115	45 46 45 45 45 40 45 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5	M M M M M M H	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASIMONTE CALTOPA PAULLO PAULLO LUNAHUANA
115-119	112 110 112 110 110 110 110 100 115 117 115 115	45 46 45 45 45 40 45 50 50 47 43	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA
115-119	112 110 112 110 110 110 110 100 115 117 115 115	45 46 45 45 45 40 45 50 50 47 43	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LINAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA
	112 110 112 110 110 110 110 100 115 117 115 115 115	45 46 45 45 45 40 45 50 50 50 47 43 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZINIGA TACUASIMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLYA
115-119	112 110 110 110 110 110 100 115 117 115 115 115 115	45 45 46 45 45 45 45 40 45 50 50 47 43 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LA TOLVA
	112 110 112 110 110 110 110 100 115 117 115 115 115 115	45 45 46 45 45 40 45 50 50 50 47 43 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA
	112 110 112 110 110 110 100 115 117 115 115 115 115 115	45 45 46 45 45 45 40 45 50 50 50 47 43 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASINONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LA TOLVA JACAYA MACHURANGA
	112 110 112 110 110 110 100 115 117 115 115 115 115	45 45 46 45 45 45 40 45 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LA TOLYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO
	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA SJUANITO SJUANITO
	112 110 112 110 110 110 100 115 117 115 115 115 115	45 45 46 45 45 45 40 45 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASINGONTE CALTOPA PAULLO PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO S.JUANITO
	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLVA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO HUALLAMPI
	112 110 110 110 110 110 100 115 117 115 115 115 115 122 120 123 120 122 120	45 45 46 45 45 40 45 50 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASINGONTE CALTOPA PAULLO PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO S.JUANITO
	112 110 110 110 110 110 100 115 117 115 115 115 115 122 120 123 120 122 120	45 45 46 45 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 53.8	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLVA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO HUALLAMPI
	112 110 110 110 110 110 110 115 117 115 115 115 115 122 120 123 120 122 120 122 120	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVN
	112 110 110 110 110 110 110 115 117 115 115 115 115 122 120 123 120 122 120 122 120	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVN
120-124	112 110 110 110 110 110 110 115 117 115 115 115 115 122 120 123 120 122 120 122 120 123	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 50 50 43 50 50 43 50 50 43 50 50 43 50 50 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA SUANITO SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVIN PAULLO
120-124	112 110 110 110 110 110 100 115 117 115 115 115 115 122 120 123 120 122 120 122 120 120 120 120 120 120	45 45 46 45 45 40 45 50 50 47 43 50 50 43 50 43 50 43 50 50 50 47 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.0 21.7 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 2 2 3 3 3 4 4 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO HUALLAMPI CHAYN CHAYN CHAYN PAULLO JACAYA
120-124	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 57 50 50 50 50 52 55 50 50 50 53 55 53	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAYN CHAYN PAULLO JACAYA HUAGL
120-124	112 110 110 110 110 110 100 115 117 115 115 115 115 122 120 123 120 122 120 122 120 120 120 120 120 120	45 45 46 45 45 40 45 50 50 47 43 50 50 43 50 43 50 43 50 50 50 47 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.0 21.7 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 2 2 3 3 3 4 4 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO HUALLAMPI CHAYN CHAYN CHAYN PAULLO JACAYA
120-124	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 57 50 50 50 50 52 55 50 50 50 53 55 53	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAYN CHAYN PAULLO JACAYA HUAGL
120-124	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 57 50 50 50 50 52 55 50 50 50 53 55 53	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LATOLYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAYN CHAYN PAULLO JACAYA HUAGL
120-124 125-129	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 123 120 125 127 126 125	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 43 50 50 50 43 50 50 50 43 50 50 50 43 50 60 60 60 60 60 60 60 60 60 60 60 60 60	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 48.6 52.9 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 4 4 2 2 2 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA SUJUANITO SUJUANITO SUJUANITO SUJUANITO HUALLAMPI CHAVIN PAULLO JACAYA HUAGI CHAVIN
120-124	112 110 110 110 110 110 115 117 115 115 115 115 122 120 122 120 122 120 122 120 122 120 122	45 45 46 45 45 40 45 50 50 47 43 50 50 43 50 43 50 55 50 45 50 45 51 53 55 53 40	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.0 21.7 19.0 21.7 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO CHAVIN PAULLO JACAYA HUAGL CHAVIN
120-124 125-129	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO LUNAHUNA LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVN PAULLO JACAYA HUAGL CHAVN
120-124 125-129	112 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 122 120 125 127 126 127 128 129 129 120 120 120 120 120 120 120 120 120 120	45 45 46 45 45 40 45 50 50 47 43 50 50 50 43 50 55 50 43 50 55 50 45 55 50 55 50 55 50 55 50 55 55 55 55 55	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6 19.0 21.7 19.5 21.3 22.3 22.3 22.3 22.4 22.6 24.2	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGI ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNAHUNA L
120-124 125-129	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO LUNAHUNA LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVN PAULLO JACAYA HUAGL CHAVN
120-124 125-129	112 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 122 120 125 127 126 127 128 129 129 120 120 120 120 120 120 120 120 120 120	45 45 46 45 45 40 45 50 50 47 43 50 50 50 43 50 55 50 43 50 55 50 45 55 50 55 50 55 50 55 50 55 55 55 55 55	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6 19.0 21.7 19.5 21.3 22.3 22.3 22.3 22.4 22.6 24.2	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGI ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNAHUNA LUNAHUNAHUNA L
120-124 125-129	112 110 110 110 110 110 110 115 117 115 115 115 115 122 120 122 120 122 120 120 120 121 120 120	45 45 46 45 45 40 45 50 50 47 43 50 50 47 43 50 55 50 45 55 50 45 55 50 45 55 50 55 55 55 56 56 56 56 56 56 56 56 56	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA MACHURANCA SJUANITO SJUANITO SJUANITO CHAVIN PAULLO JACAYA HUAGL CHAVIN PAULLO
120-124 125-129	112 110 110 110 110 110 110 110 115 117 115 115 115 115 122 120 122 120 122 120 122 120 122 120 125 127 126 127 126 127 127 127 128 130 130 130 130 130 130	45 45 46 45 46 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.5 21.7 19.5 21.3 19.5 20.5 23.2	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LATOLYA JACAYA JACAYA JACAYA JACAYA MACHURANGA SJUANITO SJUANITO SJUANITO HUALLAMPI CHAVN CHAVN PAULLO JACAYA HUAGL CHAVN PAULLO JACAYA HUAGL CHAVN PAULLO P
120-124 125-129	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 122 120 120	45 45 45 45 45 45 45 40 45 50 50 47 43 50 50 47 43 50 55 50 45 55 50 45 55 50 55 50 55 50 55 56 57 58 50 55 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 58 50 58 58 50 58 58 58 58 58 58 58 58 58 58 58 58 58	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.3 21.3 21.3 22.5 23.2 24.8 24.0 24.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANCA S.JUANITO S.JUANITO S.JUANITO CHAVIN CHAVIN PAULLO P
120-124 125-129	112 110 110 110 110 110 110 110 115 117 115 115 115 115 122 120 122 120 122 120 122 120 122 120 122 120 125 127 126 127 126 127 127 128 130 130 130 130 130 130 130	45 45 46 45 46 45 40 45 50 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 48.9 67.0 76.3 78.4 67.1 75.4 56.6 62.5 59.2	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.5 20.7 21.7 19.5 21.3 22.6 24.2 28.8 24.0 24.4 24.4 24.4 26.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO LUNAHUNA LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO S.JUANITO HUALLAMPI CHAVIN CHAVIN PAULLO JACAYA HUAGL CHAVIN PAULLO PAULL
120-124 125-129	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 122 120 120	45 45 45 45 45 45 45 40 45 50 50 47 43 50 50 47 43 50 55 50 45 55 50 45 55 50 55 50 55 50 55 56 57 58 50 55 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 58 50 58 58 50 58 58 58 58 58 58 58 58 58 58 58 58 58	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 58.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.3 21.3 21.3 22.5 23.2 24.8 24.0 24.4	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA LUNAHUNA HUAGL ZUNICA TACUASMONTE CALTOPA PAULLO PAULLO LUNAHUNA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANCA S.JUANITO S.JUANITO S.JUANITO CHAVIN CHAVIN PAULLO P
120-124 125-129 130-134	112 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 122 120 122 120 122 120 123 120 120 121 120 122 120 121 120 121 120 122 120 120	45 45 46 45 45 45 40 45 50 50 47 43 50 50 43 50 52 55 50 45 53 56 55 58 50 55 58 50 55 58 50 55 58 50 55 58 50 55 58 50 55 58 50 55 58 50 55 58 50 50 55 58 50 50 55 58 50 50 55 58 50 50 55 58 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 48.9 67.0 49.3 67.1 65.0 58.0 48.9 67.0 76.3 78.4 67.1 75.4 56.6 62.5 59.2 61.2	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.3 21.3 21.3 22.5 23.2 24.8 24.0 24.4 26.4 25.0	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 2 2 2 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANGA S.JUANITO S.JUANITO S.JUANITO CHAVIN PAULLO JACAYA HUAGE CHAVIN PAULLO
120-124 125-129	112 110 110 110 110 110 110 110 115 117 115 115 115 115 122 120 122 120 122 120 122 120 122 120 122 120 122 120 123 120 120 121 120 121 120 121 120 121 120 121 120 120	45 45 46 45 46 45 40 45 50 50 50 50 47 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 48.9 67.0 76.3 78.4 67.1 75.4 56.6 62.5 59.2 61.2	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.5 20.7 21.7 19.5 21.3 22.6 24.2 28.8 24.0 24.4 24.4 24.4 25.0 26.7	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANA LUNAHUANA LUNAHUANA CHAVN CHAVN PAULLO PAU
120-124 125-129 130-134	112 110 110 110 110 110 110 115 117 115 115 115 115 115 115 122 120 123 120 122 120 122 120 122 120 123 120 125 127 126 125 127 126 125 127 126 127 128 130 130 130 130 130 130 130 130 130 130	45 45 46 45 45 40 45 50 50 50 47 43 50 50 50 43 50 50 50 43 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 49.3 67.1 65.0 58.0 58.0 58.0 67.1 65.0 67.0 76.3 78.4 67.1 75.4 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.6 19.0 21.7 19.5 21.3 22.6 24.2 28.8 24.0 24.4 24.4 25.0 26.7 25.2	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA CHAVIN PAULLO JACAYA HUAGI CHAVIN PAULLO JACAYA HUAGI CHAVIN PAULLO JACAYA HUAGI CHAVIN CHAVIN CHAVIN CHAVIN C
120-124 125-129 130-134	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 58.0 48.9 67.0 76.3 78.4 56.6 67.1 75.4 56.6 62.5 59.2 61.2	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.7 19.5 21.3 22.6 24.2 24.4 24.4 26.4 25.0 26.7 25.2 25.8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 3 4 4 2 2 2 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASIMONTE CALTOPA PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANIGA S. JUANITO S. JUANITO S. JUANITO S. JUANITO HUALLAMPI CHAVIN CHAVIN PAULLO P
120-124 125-129 130-134	112 110 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 122 120 122 120 122 120 122 120 123 120 123 120 123 120 123 120 123 120 123 120 123 130 131 130 130 131 135 138 138 138 138	45 45 46 45 46 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 48.9 67.1 65.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3 21.3 22.6 24.2 28.8 24.0 24.4 24.4 25.0 26.7 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANA LUNAHUANA LUNAHUANA CHAVN CHAVN PAULLO
120-124 125-129 130-134	112 110 110 110 110 110 110 110 115 115 115	45 45 46 45 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 55.8 53.8 52.2 47.0 49.3 67.1 65.0 58.0 48.9 67.0 76.3 78.4 56.6 67.1 75.4 56.6 62.5 59.2 61.2	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.3 19.3 19.5 21.7 19.5 21.3 22.6 24.2 24.4 24.4 26.4 25.0 26.7 25.2 25.8	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 3 4 4 2 2 2 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA HUAGI ZUNIGA TACUASIMONTE CALTOPA PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA JACAYA JACAYA MACHURANIGA S. JUANITO S. JUANITO S. JUANITO S. JUANITO HUALLAMPI CHAVIN CHAVIN PAULLO P
120-124 125-129 130-134	112 110 110 110 110 110 110 110 115 117 115 115 115 115 115 122 120 122 120 122 120 122 120 122 120 123 120 123 120 123 120 123 120 123 120 123 120 123 130 131 130 130 131 135 138 138 138 138	45 45 46 45 46 45 40 45 50 50 50 50 50 50 50 50 50 50 50 50 50	46.9 41.3 46.8 41.0 43.7 32.0 22.9 45.9 49.3 50.8 43.0 37.8 34.8 64.5 57.2 48.6 52.9 47.0 49.3 67.1 65.0 48.9 67.1 65.0 48.9	15.2 14.9 17.2 15.7 15.0 14.8 10.8 16.5 17.3 16.2 16.5 13.6 16.4 19.0 18.8 19.3 19.3 19.6 19.0 21.7 19.5 21.3 21.3 22.6 24.2 28.8 24.0 24.4 24.4 25.0 26.7 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	M M M M M M M M M M M M M M M M M M M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAULLO LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA LUNAHUANA PAULLO PAULLO LUNAHUANA LA TOLVA JACAYA JACAYA JACAYA JACAYA MACHURANA LUNAHUANA LUNAHUANA CHAVN CHAVN PAULLO

Ī							-		- 1
140-144	140	60	75.5	27.2	М	2	1		S.JUANITO
	140	55	72.2	29.6	Н	3		1	CHAVIN
145-149	147	63	107.2	36.2	M	3	1		LA TOLVA
	146	65	106.6	30.4	M	3	1		P.COCA
							3	1	
									-
150-154	153	67	106.0	30.2	M	3	1		S.JUANITO
155-159	157	97	112.3	36.7	M	2	1		MACHURANGA
							2	0	1
									-
160-164									
165-169									
100-100									
							0	0	1
							_ <u> </u>		4
L									

Tabla 47. Número de Individuos Capturados por Pescador en cada Estación de muestreo

ESTRATO	ESTACION	N	IUMEF	RO DE	CAMA	RONE	S EXTI	RAIDO	S		
msnm				P	OR PES	CADO)R			SUB TOTAL	TOTAL
		P1	P2	P3	P4	P5	P6	P 7	P8		
0-100	PAMPILLA	267	370	427	548	332	402	498	250	3,094	
0-100	LUCUMO	67	111	135	100	145	73	134	163	928	4 638
0-100	FORTALEZA	98	45	59	68	56	99	114	77	616	
100 - 300	A.HUNGARA	122	143	82	109	95	109	204	185	1,049	
100 - 300	CONCON	144	95	25	21	89	127	101	188	790	2 742
100 - 300	CALTOPA	195	116	138	71	46	84	115	138	903	
300 - 500	SOCSI	95	142	87	96	65	32	41	88	646	
300 - 500	PAULLO	88	39	68	86	116	76	40	74	587	1 499
300 - 500	LUNAHUANA	40	13	16	39	29	54	40	35	266	
500 - 700	CATAPALLA	54	24	2	3	7	6	6	112	214	
500 - 700	JACAYITA	22	3	1	3	3	4	13	143	192	434
500 - 700	PACARAN	4	1	1	0	1	1	2	18	28	
700 - 900	HUAGIL	2	1	1	1	4	1	3	14	27	
700 - 900	ZUÑIGA	2	0	2	2	2	2	2	0	12	73
700 - 900	MACHURAMGA	7	1	10	8	5	1	1	1	34	
900 - 1100	SAN JUANITO	1	0	2	3	1	2	1	1	11	
900 - 1100	PIEDRA COCCA	21	20	36	27	27	21	12	12	176	202
900 - 1100	LA TOLVA	0	4	6	1	1	0	2	1	15	
1100 - 1300	HUALLAMPI	14	8	15	6	6	6	8	4	67	
1100 - 1300	TACUASIMONTE	3	5	7	3	6	5	1	3	33	104
1100 - 1300	CANCHAN	1	0	0	0	1	0	2	0	4	
1300 - 1500	ESCARILLA	3	4	2	4	2	3	5	6	29	
1300 - 1500	CHAVIN	9	12	16	10	16	18	24	19	124	155
1300 - 1500	CHICCHICAY	0	0	1	1	0	0	0	0	2	
1500 - 1700	CAPILLUCAS	0	0	1	1	0	0	0	0	2	
1500 - 1700	PUTINZA	0	0	0	0	0	0	0	0	0	2
1500 - 1700	CALACHOTA	0	0	0	0	0	0	0	0	0	

Tabla 48. Biomasa Capturada por Pescador en cada Estación de Muestreo

ESTRATO	ESTACION			BIOMAS	A DE CAM	IARON EX	TRAIDO			SUB	
msnm				I	POR PESC.	ADOR(GR	.)			TOTAL	TOTAL
		P1	P2	P3	P4	P5	P6	P 7	P8	_	
0-100	PAMPILLA	1485.19	1357.71	1462.27	1455.40	1132.65	1751.12	1532.15	1078.57	11,255.06	
0-100	LUCUMO	374.59	784.47	772.33	475.76	660.07	409.21	1047.45	942.92	5,466.81	19,418.97
0-100	FORTALEZA	465.76	221.93	273.15	286.65	235.20	462.00	356.12	396.29	2,697.11	
100 - 300	A.HUNGARA	666.93	624.85	471.75	802.16	548.08	592.44	781.83	630.82	5,118.85	
100 - 300	CONCON	499.94	709.77	127.08	183.75	561.88	570.46	322.19	599.86	3,574.94	13,397.87
100 - 300	CALTOPA	653.51	393.17	1110.57	208.82	474.31	667.80	589.50	606.39	4,704.09	
300 - 500	SOCSI	438.62	664.77	568.06	739.96	503.49	256.00	325.72	499.71	3,996.33	
300 - 500	PAULLO	794.07	260.68	616.25	763.76	1547.02	593.42	464.62	981.30	6,021.13	13,003.66
300 - 500	LUNAHUANA	725.56	128.92	224.00	386.84	219.11	706.00	348.72	247.06	2,986.20	
500 - 700	CATAPALLA	157.92	361.00	15.00	46.00	86.00	60.00	31.00	261.33	1,018.26	
500 - 700	JACAYITA	148.00	21.00	66.00	108.00	117.00	107.00	296.00	276.87	1,139.87	2,353.89
500 - 700	PACARAN	39.00	44.00	1.00	#¡DIV/0!	2.00	#¡DIV/0!	6.00	103.76	195.76	
700 - 900	HUAGIL	2.00	30.00	31.00	67.00	125.00	1.00	89.00	99.00	444.00	
700 - 900	ZUÑIGA	2.00	#¡DIV/0!	7.00	11.00	60.00	2.00	85.00	#¡DIV/0!	167.00	1,065.00
700 - 900	MACHURAMGA	67.00	18.00	211.00	93.00	35.00	6.00	6.00	18.00	454.00	
900 - 1100	SAN JUANITO	58.00	#¡DIV/0!	83.00	56.00	110.00	119.00	20.00	17.00	463.00	
900 - 1100	PIEDRA COCCA	451.50	221.00	537.94	319.00	293.00	280.00	175.00	191.00	2,468.44	3,420.44
900 - 1100	LA TOLVA	#¡DIV/0!	12.00	252.00	65.00	27.00	#¡DIV/0!	120.00	13.00	489.00	
1100 - 1300	HUALLAMPI	125.00	79.00	188.57	103.00	118.00	82.00	28.00	47.00	770.57	
1100 - 1300	TACUASIMONTE	33.00	60.00	76.00	28.00	79.00	39.00	15.00	27.00	357.00	1,191.57
1100 - 1300	CANCHAN	16.00	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	14.00	#¡DIV/0!	34.00	#¡DIV/0!	64.00	
1300 - 1500	ESCARILLA	20.00	43.00	20.00	36.00	21.00	25.00	40.00	74.00	279.00	
1300 - 1500	CHAVIN	213.00	250.91	236.80	175.00	405.71	326.25	363.13	256.00	2,226.80	2,592.80
1300 - 1500	CHICCHICAY	#¡DIV/0!	#¡DIV/0!	10.00	77.00	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	87.00	
1500 - 1700	CAPILLUCAS	#¡DIV/0!	#¡DIV/0!	13.00	12.00	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	25.00	
1500 - 1700	PUTINZA	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	25.00
1500 - 1700	CALACHOTA	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	

ANEXO 3 Análisis de Fitoplancton

PRODUCTO : Agua

CANTIDAD DE MUESTRA : 18 frascos de 500 ml

PRESENTACION : Frasco de plastico con tapa rosca

CONDICION : Bueno, certado FECHA DE MUESTREO : 16-22/10/2019 FECHA DE INICIO DE ENSAYO : 06/11/2019 FECHA DE TERMINO DE ENSAYO : 07/11/2019

RESULTADOS FITOPLANCTON

								N	J° cél/litro									
DIVISION / ESPECIE	Huagil	Fortaleza	Alto Hungara	Canchan	Lunahuana	Machuranga	Capillucas	San Juanito	Calachota	Pacaran	Huayllampi	Socsi	Caltopa	Pampilla	Catapalla	Escarilla	La Tolva	Chicchicay
BACILLARIOPHYTA	100	107	146	163	125	139	160	154	161	147	167	132	127	143	149	190	218	180
Hannaea arcus	10	0	10	15	18	0	0	14	0	0	0	0	12	0	20	16	10	0
Cocconeis placentula	0	0	6	8	0	0	0	0	12	0	12	10	0	0	0	14	14	0
Cymbella lanceolata	12	0	11	16	12	20	26	12	20	15	20	0	0	20	14	20	24	24
Cymbella affinis	16	20	22	24	23	14	20	16	23	18	18	24	22	22	24	22	20	22
Cymbella sp.	14	14	16	12	20	8	19	20	14	22	14	20	28	14	12	28	18	18
Diatoma vulgare	10	11	9	12	15	15	10	12	12	16	12	12	16	10	11	12	14	12
Diploneis ovalis	0	0	0	0	0	0	0	8	10	12	0	0	0	0	0	0	12	0
Fragillaria capucina	14	28	25	20	29	20	33	14	28	32	35	30	18	32	26	30	40	36
Frustulia rhomboides	6	8	0	О	0	0	7	0	0	14	10	0	0	0	0	0	О	0
Melosira varians	0	0	0	32	0	24	25	26	25	0	0	0	8	12	10	10	28	38
Navicula cuspidata	0	0	0	О	0	0	0	14	0	0	0	10	0	0	0	0	0	0
Navicula sp.	10	14	18	14	0	14	14	12	17	18	12	14	15	13	16	16	16	22
Navicula minuscula	0	0	12	10	0	12	0	6	0	0	12	6	0	8	4	12	0	0
Navicula dicephala	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nitzschia sigmoidea	0	0	0	0	8	6	0	0	0	0	6	0	0	0	0	0	0	0
Pinnularia sp.	0	0	10	О	0	0	6	0	0	0	0	0	0	0	0	0	0	0
Pleurosira laevis	0	0	0	0	0	6	0	0	0	0	16	0	8	0	0	0	14	0
Surirella guatimalensis	0	0	0	О	0	0	0	0	0	0	0	0	0	0	4	0	8	0
Synedra ulna	0	12	7	0	0	0	0	0	0	0	0	0	0	12	0	10	0	8
Synedra goulardii	8	0	0	0	0	0	0	0	0	0	0	6	0	0	8	0	0	0
CYANOBACTERIA	0	13	0	12	0	0	4	8	0	6	4	6	0	8	0	4	4	4
Anabaena sp.	0	7	0	8	0	0	4	8	0	6	0	0	0	0	0	0	0	0
Chroococcus sp.	0	0	0	О	0	0	0	0	0	0	0	0	0	4	0	4	0	0
Oscillatoria tenuis (filamento)	0	6	0	4	0	0	0	0	0	0	4	6	0	4	0	0	4	4
CHLOROPHYTA	52	37	20	14	20	25	28	43	19	16	23	22	6	20	8	20	32	54
Cladophora glomerata (fil-ramificado)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Closterium leibleinii	10	8	10	8	8	0	0	10	0	0	0	4	0	12	6	8	0	12
Cosmarium botrytis	12	0	0	6	0	6	10	0	10	0	0	0	0	8	0	0	0	14
Cosmarium sp.	0	0	0	0	4	0	6	8	0	8	0	10	0	0	0	0	12	8
Scenedesmus sp. (cenobio)	20	17	0	0	0	10	0	17	0	0	16	8	0	0	0	6	14	12
Spirogyra sp. (filamento)	0	0	4	0	4	4	0	0	4	0	2	0	6	0	2	6	0	0
Pediastrum boryanum (cenobio)	10	12	6	0	4	5	12	8	5	7	5	0	0	0	0	0	6	8

Referencia:

lard Methods for the Examination of Water and Wastewater. 22th Edition,

Plankton. Washington. Análisis realizado por:

Análisis de Fitoplancton Bentónico

PRODUCTO

: Agua

CANTIDAD DE MUESTRA

ascos de 500 ml

PRESENTACION CONDICION

alastico con tapa rosca eno, cerrado

FECHA DE MUESTREO

5-22/10/2019

FECHA DE INICIO DE ENSAYO

04/11/2019

FECHA DE TERMINO DE ENSAYO 35/11/2019

RESULTADOS PERIFITON

DIVISION / ESPECIE									N° cél/mm²									
DIVISION / ESPECIE	Huagil	Fortaleza	Alto Hungara	Canchan	Lunahuana	Machuranga	Capillucas	San Juanito	Calachota	Pacaran	Huayllampi	Socsi	Caltopa	Pampilla	Catapalla	Escarilla	La Tolva	Chicchicay
BACILLARIOPHYTA	40	30	28	38	34	38	32	38	41	41	45	39	28	35	35	28	30	36
Cocconeis placentula	2	0	0	0	2	0	0	0	2	0	0	2	0	0	0	2	1	0
Cymbella lanceolata	0	О	0	4	o	4	2	6	4	4	5	0	0	0	5	2	О	4
Cymbella affinis	8	6	4	8	5	6	8	3	5	4	6	5	8	7	7	4	7	6
Cymbella sp.	4	3	4	2	5	0	0	0	2	0	0	5	0	4	О	0	0	2
Diatoma vulgare	2	2	4	2	3	5	4	4	2	4	4	2	3	5	2	2	4	4
Diploneis ovalis	0	О	0	О	0	0	0	2	2	5	0	0	0	0	О	0	2	0
Fragillaria capucina	14	12	10	10	11	13	8	14	14	15	12	14	10	14	14	12	10	11
Frustulia rhomboides	0	О	0	О	0	0	0	0	0	2	3	0	0	0	О	0	0	0
Gomphonema acuminatum	2	О	0	О	2	0	0	0	2	3	4	2	3	0	О	0	0	0
Melosira varians	0	О	0	6	0	4	4	5	2	0	0	0	0	0	О	0	2	4
Navicula cuspidata	0	О	0	О	0	0	0	2	0	0	0	1	0	0	О	0	0	0
Navicula sp.	4	5	2	4	3	2	4	2	2	4	5	3	4	3	4	2	2	4
Navicula minuscula	2	О	0	О	1	2	0	0	2	0	0	2	0	0	О	2	0	0
Navicula dicephala	0	О	0	2	2	2	О	О	2	0	2	1	0	0	3	0	О	0
Pinnularia sp.	0	О	2	О	o	0	2	О	o	0	0	0	0	0	О	0	О	0
Pleurosira la evis	0	О	0	О	o	0	О	О	o	0	4	2	0	0	О	0	О	0
Surirella guatimalensis	0	О	0	О	0	0	0	0	0	0	0	0	0	0	О	0	2	0
Synedra ulna	0	2	2	О	0	0	0	0	0	0	0	0	0	2	О	2	0	1
Synedra goulardii	2	О	0	О	0	0	0	0	0	0	0	0	0	0	О	0	0	0
CYANOBACTERIA	1	4	1	3	2	2	1	2	1	3	2	2	0	2	2	2	2	1
Anabaena sp. (tricoma)	0	0	0	0	0	0	1	0	0	3	0	0	0	0	0	0	0	0
Calothrix sp. (tricoma)	0	2	0	3	0	0	0	2	0	0	0	2	0	o	О	О	2	0
Chroococcus sp.	0	О	0	О	2	0	0	0	0	0	0	0	0	o	О	О	0	0
Merismopedia elegans (colonia)	0	2	0	О	o	2	О	О	o	0	0	0	0	0	О	2	О	0
Oscillatoria tenuis (filamento)	1	О	1	О	0	0	0	0	1	0	2	0	0	2	2	0	0	1
CHLOROPHYTA	4	5	3	1	4	8	3	6	3	5	3	2	3	3	6	4	2	3
Cladophora glomerata (fil-ramificado)	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
Closterium leibleinii	0	1	1	О	0	0	0	2	0	0	О	0	О	2	3	0	0	0
Cosmarium botrytis	0	О	0	0	2	2	2	О	О	0	О	0	0	0	О	0	0	О
Cosmarium sp.	0	О	0	0	О	2	О	1	О	2	О	1	0	0	О	0	1	0
Scenedesmus sp.	4	2	0	0	О	2	О	2	О	0	О	0	0	0	О	4	0	2
Spirogyra sp. (filamento)	0	О	2	0	0	1	0	0	0	0	О	1	2	0	2	О	0	0
Ulothrix sp. (filamento)	0	О	0	0	О	1	О	О	1	0	О	0	0	0	О	0	0	О
Pediastrum boryanum (cenobio)	0	2	0	1	2	0	1	1	2	3	2	0	0	1	1	0	1	1

APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater. 22th Edition,

Plankton. Washington.

Análisis realizado por:

Análisis de Zooplancton

INFORME DE ENSAYO

Empresa: Compañía Eléctrica El Platanal S.A. Proyecto: XXXVIII Monitoreo biológico de camarón de río

Procedencia: Río Cañete Asunto: análisis de zooplancton Tipo de muestra: agua superficial

Fecha de muestreo: 17-22 de octubre del 2019

IDENT	IFICACIÓN				ENSAYO)		
IDENT	IFICACION			Análisis o	cualitativo y cuantita	ativo de zooplancton		
Código de muestra	Tipo de producto	Phylum	Clase	Orden	Familia	Taxón	Org/m ³	Observaciones
				DI OIMA	LEPADELLIDAE	Lepadella ovalis	70	Adultos y juveniles.
Pampilla	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis sp.	110	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	180	Adultos y juveniles.
		ROTIFERA	EUROTATORIA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	90	Adultos y juveniles.
Fortaleza	Agua superficial	ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	50	Adyltos y juveniles.
		ARTHRUPUDA	OSTRACODA	PODOCOPIDA	CTPRIDIDAE	Potamocypris sp.	20	Adultos y juveniles.
		ROTIFERA	EUROTATORIA	PLOIMA	LECANIDAE	Lecane luna	50	Adultos y juveniles.
Caltopa	Agua superficial	KOTIFERA	EURUTATURIA	PLOIIVIA	LECANIDAE	Monostyla lunaris	80	Adultos y juveniles.
		ARTHROPODA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	50	Adultos y juveniles.
		ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	40	Adultos y juveniles.
Alto Hungará	Agua superficial	NOTIL LIVA	LONOTATONIA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	60	Adultos y juveniles.
		ARTHROPODA	MAXILLOPODA	CYCLOPOIDA	CYCLOPIDAE	Metacyclops sp.	20	Adultos, copepoditos y nauplios.
Socsi	Agua superficial	AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1600	
00031	Agua superriciai	ROTIFERA	EUROTATORIA	SIN ORDEN	PHILODINIDAE	Rotaria sp.	50	Adultos y juveniles.
				PLOIMA	LEPADELLIDAE	Colurella uncinata	50	Adultos y juveniles.
Lunahuaná	Agua superficial	ROTIFERA	EUROTATORIA	TEOWA	EUCHLANIDAE	Euchlanis dilatata	120	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	35	Adultos y juveniles.
Catapalla	Agua superficial	AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1500	
Odtapalia	rigua supernolai	ARTHROPODA	INSECTA	EPHEMEROPTERA	BAETIDAE	Rotaria sp.	70	Adultos y juveniles.
				PLOIMA	EUCHLANIDAE	Euchlanis dilatata	220	Adultos y juveniles.
Pacarán	Agua superficial	ROTIFERA	EUROTATORIA	1 2011	LEPADELLIDAE	Lepadella ovalis	170	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	210	Adultos y juveniles.
Huayllampi	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	LECANIDAE	Lecane luna	60	Adultos y juveniles.
r lady lidiripi	rigua supernolai	NOTE DAY	Loncontrolat	SIN ORDEN	PHILODINIDAE	Rotaria sp.	40	Adultos y juveniles.
		AMOEBOZOA	TUBULINEA	ARCELLINIDA	CENTROPYXIDAE	Centropyxis sp.	1200	
Huagil	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	LEPADELLIDAE	Lepadella ovalis	140	Adultos y juveniles.
			2011011110101	SIN ORDEN	PHILODINIDAE	Rotaria sp.	100	Adultos y juveniles.
				PLOIMA	EUCHLANIDAE	Euchlanis dilatata	140	Adultos y juveniles.
Machuranga	Agua superficial	ROTIFERA	EUROTATORIA		LEPADELLIDAE	Lepadella ovalis	80	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	90	Adultos y juveniles.
La Tolva	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	LECANIDAE	Monostyla lunaris	70	Adultos y juveniles.
	- гуш - гр			SIN ORDEN	PHILODINIDAE	Rotaria sp.	80	Adultos y juveniles.
San Juanito	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	LEPADELLIDAE	Lepadella ovalis	150	Adultos y juveniles.
	- igua - aparita			SIN ORDEN	PHILODINIDAE	Rotaria sp.	120	Adultos y juveniles.
Escarilla	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	70	Adultos y juveniles.
	3	_		SIN ORDEN	PHILODINIDAE	Rotaria sp.	220	Adultos y juveniles.
				PLOIMA	LEPADELLIDAE	Lepadella ovalis	60	Adultos y juveniles.
Chicchicay	Agua superficial	ROTIFERA	EUROTATORIA			Colurella uncinata	240	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	120	Adultos y juveniles.
Canchán	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	LEPADELLIDAE	Lepadella ovalis	150	Adultos y juveniles.
	3 1			SIN ORDEN	PHILODINIDAE	Rotaria sp.	120	Adultos y juveniles.
				PLOIMA	LEPADELLIDAE	Lepadella ovalis	60	Adultos y juveniles.
Capillucas	Agua superficial	ROTIFERA	EUROTATORIA			Colurella uncinata	180	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	140	Adultos y juveniles.
Calachota	Agua superficial	ROTIFERA	EUROTATORIA	PLOIMA	EUCHLANIDAE	Euchlanis dilatata	70	Adultos y juveniles.
				SIN ORDEN	PHILODINIDAE	Rotaria sp.	220	Adultos y juveniles.

Referencia:

 $APHA-AWWA-WEF.\ 2012.\ Standard\ Methods\ for\ the\ Examination\ of\ Water\ and\ Wastew\ ater.\ Biological\ Examination,\ Part\ 10200:\ Plankton.\ 22th\ Edition.\ Washington.$

Análisis de Macroinvertebrados INFORME DE ENSAYO

Empresa: Compañía Eléctrica El Platanal S.A.
Proyecto: XXXVIII Monitoreo biológico de camarón de río
Procedencia: Río Cañete
Asunto: análisis de macroinvertebrados bentónicos
Tipo de muestra: sedimento
Fecha de muestreo: 17-22 de octubre del 2019

					ENSAYO			
IDENTIFIC	ACION			Análisis cualitativo y cua	ntitativo de macroinverte	ebrados bentónicos		
Código de muestra	Tipo de producto	Phylum	Clase	Orden	Familia	Taxón	Org/m²	Observaciones
		CNIDARIA	HYDROZOA	HYDROIDA	HYDRIDAE	Hydra sp.	30	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE BAETIDAE	Cyprinotus sp.	40 60	Adultos y juveniles. Ninfas.
Pampilla	Sedimento			EPHEMEROPTERA	CAENIDAE	Andesiops sp. Caenis sp.	70	Ninfas.
ranpila	Codimento	ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPTILIDAE	Oxyethira sp.	10	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	50	Larvas.
				DIPTERA	CHIRONOMIDAE	Cricotopus sp.	110	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	80	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	20	Adultos y juveniles.
Festelese	0			EPHEMEROPTERA	BAETIDAE	Andesiops sp.	50	Ninfas.
Fortaleza	Sedimento	ARTHROPODA	INSECTA		CAENIDAE	Caenis sp.	100 30	Ninfas.
			INGLETA	TRICHOPTERA	HYDROPSYCHIDAE HYDROPTILIDAE	Hydropsyche sp. Ochrotrichia sp.	80	Ninfas.
				COLEOPTERA	HYDROPHILIDAE	Enochrus sp.	50	Larvas.
		ANNELIDA	CLITELLATA	LUMBRICULIDA	LUMBRICULIDAE	Eclipidrilus sp.	40	Adultos y juveniles.
		ANNELIDA	CLIELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	150	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	100	Adultos y juveniles.
Caltopa	Sedimento			EPHEMEROPTERA	BAETIDAE	Andesiops sp.	200	Ninfas.
		4 DT (DODOD4		-	CAENIDAE	Caenis sp.	250	Ninfas.
	1	ARTHROPODA	INSECTA	TRICHOPTERA	HYDROPSYCHIDAE HYDROPTILIDAE	Hydropsyche sp.	30	Ninfas.
	1			DIPTERA	CHIRONOMIDAE	Ochrotrichia sp. Pentaneura sp.	300 40	Ninfas. Larvas.
		CNIDARIA	HYDROZOA	HYDROIDA	HYDRIDAE	Hydra sp.	60	Adultos y juveniles.
	1	MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PLANARIIDAE	Dugesia sp.	30	Adultos y juveniles.
		NEMATODA	ENOPLEA	DORYLAIMIDA	DORYLAIMIDAE	Dorylaimus sp.	30	Adultos y juveniles.
	1		OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	40	Adultos y juveniles.
	1		COTTACODA	1 ODOODFIDA		Herpetocypris sp.	100	Adultos y juveniles.
Alto Hungará	Sedimento			EPHEMEROPTERA	BAETIDAE	Andesiops sp.	400	Ninfas.
		ARTHROPODA			CAENIDAE	Caenis sp.	50	Ninfas.
			INSECTA		ELMIDAE SIMULIIDAE	Heterelmis sp. Simulium sp.	10 20	Larvas.
				DIPTERA		Alotanypus sp.	50	Larvas.
					CHIRONOMIDAE	Tanytarsus sp.	200	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	TUBIFICIDAE	Tubifex sp.	10	Adultos y juveniles.
			OCTDA CODA	PODOCOPIDA	CYDDIDIDAE	Cyprinotus sp.	50	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	20	
Socsi	Sedimento			EPHEMEROPTERA	CAENIDAE	Caenis sp.	100	Ninfas.
		ARTHROPODA	INICECTA	TRICHOPTERA	HYDROBIOSIDAE	Hydropsyche sp.	10	Ninfas.
			INSECTA	COLFORTERA	HYDROPTILIDAE ELMIDAE	Ochrotrichia sp.	50 60	Ninfas.
				COLEOPTERA DIPTERA	SIMULIDAE	Microcylloepus sp. Simulium sp.	10	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	TUBIFICIDAE	Tubifex sp.	40	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	100	Adultos y juveniles.
				EPHEMEROPTERA	CAENIDAE	Caenis sp.	80	Ninfas.
Lunahuaná	Sedimento			TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	80	Ninfas.
Lananaana	CCGIITICITIC	ARTHROPODA	INSECTA	COLEOPTERA	ELMIDAE	Heterelmis sp.	20	Larvas.
						Microcylloepus sp.	50	
				DIPTERA	CHIRONOMIDAE	Alotanypus sp. Tanytarsus sp.	30 120	Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	20	Larvas. Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	250	Adultos y juveniles.
	1					Cyprinotus sp.	40	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	150	Adultos y juveniles.
Catapalla	Sedimento			EPHEMEROPTERA	BAETIDAE	Andesiops sp.	120	Ninfas.
	1	ARTHROPODA			CAENIDAE	Caenis sp.	400	Ninfas.
	1		INSECTA	TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	200	Ninfas.
	1			COLEOPTERA DIPTERA	ELMIDAE CHIRONOMIDAE	Microcylloepus sp. Alotanypus sp.	80 50	Adultos y larvas. Larvas.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	TUBIFICIDAE	Branchiura sowerbyi	100	Adultos y juveniles.
	1	MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	220	Adultos y juveniles.
	1			PODOCOPIDA		Cyprinotus sp.	100	Adultos y juveniles.
	1		OSTRACODA	POLOCOMDA	CYPRIDIDAE	Herpetocypris sp.	30	Adultos y juveniles.
Pacarán	Sedimento			EPHEMEROPTERA	BAETIDAE	Andesiops sp.	300	Ninfas.
		ARTHROPODA		L	CAENIDAE	Caenis sp.	500	Ninfas.
			INSECTA	TRICHOPTERA	HYDROPSYCHIDAE HYDROPTILIDAE	Hydropsyche sp.	60	Ninfas.
	1			1		Ochrotrichia sp. Heterelmis sp.	250 20	Ninfas. Larvas.
	1			COLEOPTERA	ELMIDAE	Microcylloepus sp.	800	Larvas.
		PLATYHELMINTHES	TURBELLARIA	TRICLADIDA	PLANARIIDAE	Dugesia sp.	60	Adultos y juveniles.
	1	NEMATODA	ADENOPHOREA	DORYLAIMIDA	ACTINOLAIMIDAE	Actinolaimus sp.	50	Adultos y juveniles.
	1	MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	80	Adultos y juveniles.
	1		OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	2000	Adultos y juveniles.
	l					Herpetocypris sp.	3000	Adultos y juveniles.
Huagil	Sedimento			EPHEMEROPTERA	CAENIDAE	Caenis sp.	700	Ninfas.
	1	ARTHROPODA		COLEOPTERA	ELMIDAE	Microcylloepus sp.	200	Larvas.
				 	HYDROPHILIDAE	Enochrus sp.	60 600	Larvas.
	i l		1	i	Cricotopus sp.	000	Larvas.	
					CHIRONOMIDAE	Polypedilum sp.	30	Larvas.

		ANNELIDA	CLITELLATA	LUMBRICULIDA	LUMBRICULIDAE	Eclipidrilus sp.	20	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	HAPLOTAXIDA BASOMMATOPHORA	NAIDIDAE PHYSIDAE	Nais sp. Physa venustula	100 300	Adultos y juveniles. Adultos y juveniles.
		WOLLOSCA	OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	10	Adultos y juveniles.
Machuranga	Sedimento			EPHEMEROPTERA	CAENIDAE	Caenis sp.	500	Ninfas.
wacridranga	Occumento			TRICHOPTERA	HYDROPSYCHIDAE	Hydropsyche sp.	100	Ninfas.
					HYDROPTILIDAE	Ochrotrichia sp. Heterelmis sp.	200 70	Adultos y juveniles. Larvas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	2000	Larvas.
						Promoresia sp.	80	Larvas.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	180	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Cyprinotus sp.	40 20	Adultos y juveniles.
				HEMIPTERA	VELIIDAE	Herpetocypris sp. Ragovelia sp.	10	Adultos
San Juanito	Sedimento	ARTHROPODA		EPHEMEROPTERA	BAETIDAE	Andesiops sp.	60	Ninfas.
		AKITIKOFODA	INSECTA		CAENIDAE	Caenis sp.	80	Ninfas.
				TRICHOPTERA COLEOPTERA	HYDROPTILIDAE ELMIDAE	Ochrotrichia sp.	3000 50	Ninfas. Larvas.
				DIPTERA	SIMULIDAE	Microcylloepus sp. Simulium sp.	30	Larvas.
		PLATYHELMINTHES	TURBELLARIA	TRICLADIDA	PLANARIIDAE	Tubifex sp.	600	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	150	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	300	Adultos y juveniles.
La Tolva	Sedimento			EPHEMEROPTERA TRICHOPTERA	BAETIDAE HYDROPTILIDAE	Andesiops sp. Ochrotrichia sp.	400 1200	Ninfas. Ninfas.
La Tolva	Occumento	ARTHROPODA			ELMIDAE	Microcylloepus sp.	250	Larvas.
			INSECTA	COLEOPTERA	HYDROPHILIDAE	Enochrus sp.	40	Larvas.
				DIPTERA	EMPIDIDAE	Trichoclinocera sp.	80	Larvas.
	1	CNIDARIA	HYDROZOA	HYDROIDA	CHIRONOMIDAE HYDRIDAE	Alotanypus sp.	50 40	Larvas.
				LUMBRICULIDA	LUMBRICULIDAE	Hydra sp. Eclipidrilus sp.	40 50	Adultos y juveniles. Adultos y juveniles.
		ANNELIDA	CLITELLATA	HAPLOTAXIDA	NAIDIDAE	Nais sp.	200	Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	120	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	40	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE CAENIDAE	Andesiops sp. Caenis sp.	200 80	Ninfas. Ninfas.
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	70	Ninfas.
Huayllampi	Sedimento			COLEOPTERA	ELMIDAE	Microcylloepus sp.	100	Larvas.
					SIMULIDAE	Simulium sp.	20	Larvas.
			INSECTA		EMPIDIDAE	Trichoclinocera sp.	20	Larvas.
				DIPTERA		Alotanypus sp. Cricotopus sp.	40 300	Larvas.
					CHIRONOMIDAE	Pentaneura sp.	30	Larvas.
						Polypedilum sp.	20	
						Tanytarsus sp.	60	Larvas.
		ANNELIDA	CLITELLATA	LUMBRICULIDA HAPLOTAXIDA	LUMBRICULIDAE NAIDIDAE	Eclipidrilus sp. Nais sp.	10 40	Adultos y juveniles. Adultos y juveniles.
		MOLLUSCA	GASTROPODA	BASOMMATOPHORA	PHYSIDAE	Physa venustula	50	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	250	Adultos y juveniles.
				EPHEMEROPTERA	BAETIDAE	Andesiops sp.	300	Ninfas.
				-	CAENIDAE	Caenis sp.	60	Ninfas.
Canchán	Sedimento			TRICHOPTERA	HYDROPSYCHIDAE HYDROPTILIDAE	Hydropsyche sp. Ochrotrichia sp.	30 50	Ninfas. Ninfas.
		ARTHROPODA		COLEOPTERA	ELMIDAE	Microcylloepus sp.	50	Larvas.
					SIMULIDAE	Simulium sp.	20	Larvas.
				DIPTED 4		Alotanypus sp.	20	Larvas.
				DIPTERA	CHIRONOMIDAE	Cricotopus sp. Polypedilum sp.	60 10	Larvas.
						Tanytarsus sp.	60	Larvas.
		CNIDARIA	HYDROZOA	HY DROIDA	HYDRIDAE	Hydra sp.	40	Adultos y juveniles.
		ANNELIDA	CLITELLATA	LUMBRICULIDA	LUMBRICULIDAE	Eiseniella tetraedra	10	Adultos y juveniles.
			OSTRACODA	PODOCOPIDA	CYPRIDIDAE	Herpetocypris sp.	400	Adultos y juveniles.
				ODONATA	LIBELLULIDAE BAETIDAE	Libellula sp. Andesiops sp.	10 300	Ninfas. Ninfas.
Escarilla	Sedimento	A DTI IDODODA		EPHEMEROPTERA	CAENIDAE	Caenis sp.	80	Ninfas.
		ARTHROPODA	INSECTA					
				TRICHOPTERA	HYDROPTILIDAE	Ochrotrichia sp.	40	Ninfas.
				COLEOPTERA	ELMIDAE	Microcylloepus sp.	50	Larvas.
					ELMIDAE SIMULIIDAE	Microcylloepus sp. Simulium sp.	50 20	Larvas. Larvas.
		MOLLUSCA	GASTROPODA	COLEOPTERA	ELMIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp.	50	Larvas. Larvas. Larvas.
		MOLLUSCA		COLEOPTERA DIPTERA	ELMIDAE SIMULIIDAE CHIRONOMIDAE	Microcylloepus sp. Simulium sp.	50 20 100	Larvas. Larvas.
		MOLLUSCA	GASTROPODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA	ELMIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp.	50 20 100 60 20 350	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas.
Chicchicay	Sedimento	MOLLUSCA	GASTROPODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA	ELMIDAE SIMULIIDAE CHIRONOMIDAE PHY SIDAE CY PRIDIDAE BAETIDAE CA ENIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp.	50 20 100 60 20 350 250	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas.
Chicchicay	Sedimento	MOLLUSCA ARTHROPODA	GASTROPODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA	ELMIDAE SIMULIDAE CHRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CAENIDAE HYDROPTILIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp.	50 20 100 60 20 350 250 30	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas.
Chicchicay	Sedimento		GASTROPODA OSTRACODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA	ELMIDAE SIMULIIDAE CHIRONOMIDAE PHY SIDAE CY PRIDIDAE BAETIDAE CA ENIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp.	50 20 100 60 20 350 250	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas.
Chicchicay	Sedimento	ARTHROPODA	GASTROPODA OSTRACODA INSECTA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA	ELMIDAE SIMULIDAE CHRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp.	50 20 100 60 20 350 250 30 50 10	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas.
Chicchicay	Sedimento		GASTROPODA OSTRACODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA	ELMIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CARIDAE HYDROPTILIDAE ELMIDAE SIMULIIDAE CHIRONOMIDAE NAIDIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cyprinotus sp. Cyprinotus sp.	50 20 100 60 20 350 250 30 50 10	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles.
Chicchicay	Sedimento	ARTHROPODA	GASTROPODA OSTRACODA INSECTA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHY SIDAE CYPRIDIDAE BAETIDAE CAENIDAE HY DROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cryprinotus sp. Andesiops sp.	50 20 100 60 20 350 250 30 50 10 300 50 800	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas.
		ARTHROPODA	GASTROPODA OSTRACODA INSECTA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA	ELMIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CAENIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE CAENIDAE CHIRONOMIDAE BAETIDAE CAENIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Caenis sp.	50 20 100 60 20 350 250 30 50 10 300 50 800	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Ninfas. Ninfas. Ninfas.
Chicchicay	Sedimento	ARTHROPODA	GASTROPODA OSTRACODA INSECTA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHY SIDAE CYPRIDIDAE BAETIDAE CAENIDAE HY DROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cryprinotus sp. Andesiops sp.	50 20 100 60 20 350 250 30 50 10 300 50 800	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas.
		ARTHROPODA ANNELDA	GASTROPODA OSTRACODA INSECTA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA	ELMIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Andesiops sp. Alotanypus sp. Alotanypus sp.	50 20 100 60 20 350 250 30 50 10 300 50 800 1200 700 400 200	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Ninfas. Larvas.
		ARTHROPODA ANNELDA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA	ELMIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE NAIDIDAE NAIDIDAE CAENIDAE CHIRONOMIDAE LEMIDAE CAENIDAE CHIRONOMIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Microcylloepus sp. Chrotrichia sp. Microcylloepus sp. Adotanypus sp. Alotanypus sp. Cricotopus sp. Cricotopus sp. Cricotopus sp.	50 20 100 60 20 350 50 10 300 50 50 1200 700 400 200 150	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Larvas.
		ARTHROPODA ANNELIDA ARTHROPODA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CAENIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CHIRONOMIDAE HYDROPTILIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Cricotopus sp. Alotanypus sp. Cricotopus sp. Alractides sp.	50 20 100 60 20 350 250 30 50 10 300 50 800 1200 400 200 150 60	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Ninfas. Adultos y juveniles. Adultos y juveniles. Adultos y juveniles.
		ARTHROPODA ANNELDA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CAENIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CHIRONOMIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYDROPTILIDAE ELMIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYGROBATIDAE NAIDIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Cricotopus sp. Alotanypus sp. Cricotopus sp. Altractides sp. Nais sp.	50 20 100 60 20 350 50 50 10 300 50 800 1200 700 400 200 150	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Ninfas. Ninfas. Ninfas. Adultos y juveniles. Larvas.
		ARTHROPODA ANNELIDA ARTHROPODA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CAENIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE NAIDIDAE BAETIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CAENIDAE CHIRONOMIDAE HYDROPTILIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Cricotopus sp. Alotanypus sp. Cricotopus sp. Alractides sp.	50 20 100 60 20 350 250 30 50 10 300 50 800 1200 400 200 150 60	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Ninfas. Adultos y juveniles. Adultos y juveniles. Adultos y juveniles.
		ARTHROPODA ANNELIDA ARTHROPODA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EHEMEROPTERA TRICHOPTERA DIPTERA HAPLOTAXIDA EHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA DIPTERA TROMBIDIFORMES HAPLOTAXIDA PODOCOPIDA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE BAETIDAE CABNIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYGROBATIDAE CHIRONOMIDAE HYGROBATIDAE CYPRIDIDAE BAETIDAE CYPRIDIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Cotrotrichia sp. Microcylloepus sp. Alotanypus sp. Cricotopus sp. Artactides sp. Nais sp. Cyprinotus sp. Hartactides sp. Nais sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Andesiops sp. Andesiops sp.	50 20 100 60 20 350 50 50 10 300 50 1200 700 400 200 150 60 20 20 380	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Larvas. Larvas. Adultos y juveniles. Ninfas. Larvas. Adultos y juveniles. Ninfas.
		ARTHROPODA ANNELIDA ARTHROPODA ANNELIDA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA OLEOPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA COLEOPTERA DIPTERA TROMBIDIFORMES HAPLOTAXIDA PODOCOPIDA EPHEMEROPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYDROPTILIDAE CHIRONOMIDAE CABNIDAE CABNIDAE CABNIDAE CABNIDAE	Microcylloepus sp. Simulium sp. Tanylarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricolopus sp. Cricolopus sp. Cyprinotus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Cricolopus sp. Cricolopus sp. Cricolopus sp. Cricolopus sp. Cricolopus sp. Andesiops sp. Cricolopus sp. Altractides sp. Nais sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Andesiops sp. Caenis sp. Caenis sp.	50 20 100 60 250 350 50 10 300 50 800 1200 700 400 150 60 20 20 20 30 300 50 800 1200 700 400 150 60 250 800 800 800 800 800 800 800 800 800 8	Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Adultos y juveniles. Ninfas. Adultos y juveniles. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas.
Capillucas	Sedimento	ARTHROPODA ANNELDA ARTHROPODA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EHEMEROPTERA TRICHOPTERA DIPTERA HAPLOTAXIDA EHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA DIPTERA TROMBIDIFORMES HAPLOTAXIDA PODOCOPIDA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE BAETIDAE CABNIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYGROBATIDAE CHIRONOMIDAE HYGROBATIDAE CYPRIDIDAE BAETIDAE CYPRIDIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Alotanypus sp. Alractides sp. Nais sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Caenis sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Caenis sp. Leptocypris sp. Andesiops sp. Caenis sp. Hydropsyche sp.	50 20 100 60 20 350 250 30 50 10 300 50 800 1200 400 200 150 60 150 20 20 20 20 20 30 20 20 30 250 30 250 30 250 30 30 50 250 30 40 250 40 250 40 40 40 40 40 40 40 40 40 40 40 40 40	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas.
Capillucas	Sedimento	ARTHROPODA ANNELIDA ARTHROPODA ANNELIDA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA OSTRACODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA OLEOPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA COLEOPTERA TRICHOPTERA COLEOPTERA DIPTERA TROMBIDIFORMES HAPLOTAXIDA PODOCOPIDA EPHEMEROPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE CHIRONOMIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE HYDROPTILIDAE CHIRONOMIDAE CABNIDAE CABNIDAE CABNIDAE CABNIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Cricotopus sp. Alotanypus sp. Aractides sp. Nais sp. Cyprinotus sp. Haractides sp. Andesiops sp. Caenis sp. Hydropsyche sp. Alotanypus sp.	50 20 100 60 20 350 350 50 10 300 50 50 1200 700 400 200 150 20 20 80 300 50 50 50 50 50 50 50 50 50 50 50 50 5	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Ninfas. Ninfas. Ninfas. Larvas. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Ninfas. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas.
Capillucas	Sedimento	ARTHROPODA ANNELIDA ARTHROPODA ANNELIDA	GASTROPODA OSTRACODA INSECTA CLITELLATA INSECTA ARACHNIDA CLITELLATA OSTRACODA	COLEOPTERA DIPTERA BASOMMATOPHORA PODOCOPIDA EPHEMEROPTERA TRICHOPTERA COLEOPTERA DIPTERA HAPLOTAXIDA EPHEMEROPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA DIPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA TRICHOPTERA	ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE PHYSIDAE CYPRIDIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE SIMULIDAE SIMULIDAE CHIRONOMIDAE BAETIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CABNIDAE HYDROPTILIDAE CABNIDAE HYDROPTILIDAE ELMIDAE CHIRONOMIDAE CHIRONOMIDAE HYGROBATIDAE CHIRONOMIDAE HYGROBATIDAE CYPRIDIDAE BAETIDAE CABNIDAE CABNIDAE CABNIDAE CABNIDAE	Microcylloepus sp. Simulium sp. Tanytarsus sp. Physa venustula Herpetocypris sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Simulium sp. Cricotopus sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Andesiops sp. Caenis sp. Ochrotrichia sp. Microcylloepus sp. Alotanypus sp. Alotanypus sp. Alractides sp. Nais sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Caenis sp. Cyprinotus sp. Herpetocypris sp. Andesiops sp. Caenis sp. Leptocypris sp. Andesiops sp. Caenis sp. Hydropsyche sp.	50 20 100 60 20 350 250 30 50 10 300 50 800 1200 400 200 150 60 150 20 20 20 20 20 30 20 20 30 250 30 250 30 250 30 30 50 250 30 40 250 40 250 40 40 40 40 40 40 40 40 40 40 40 40 40	Larvas. Larvas. Larvas. Adultos y juveniles. Adultos y juveniles. Ninfas. Ninfas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Larvas. Adultos y juveniles. Ninfas. Adultos y juveniles. Ninfas. Ninfas. Ninfas. Ninfas. Ninfas.

Referencia:
APHA-AWWA-WEF. 2012. Standard Methods for the Examination of Water and Wastew ater. Biological Examination, Part 10500: Benthic Macroinvertebrates. 22th Edition. Washington.

ANEXO 4 GALERÍA FOTOGRÁFICA

Figura 68. Procedimiento de muestreo

Figura 69. Muestras de camarón – Estación Jacayita

Figura 70. Muestras de camarón – Estación Piedra Coca

Figura 71. Conteo del camarón recolectado

Figura 72. Medida del peso del camarón

Figura 73. Medida de la talla del camarón

Figura 74. Extracción del camarón en el río Cañete

Figura 75. Grupo de trabajo – Octubre 2019

CEL-02877-2020

27 de julio del 2020

Señores

ORGANISMO DE EVALUACIÓN Y FISCALIZACIÓN AMBIENTAL - OEFA

Av. Faustino Sánchez Carrión № 603, 607 y 615 Jesús María

Asunto: Central Hidroeléctrica "El Platanal": comunica imposibilidad de ejecución

de monitoreo de camarones por razones de fuerza mayor relacionadas al

brote del COVID-19.

De nuestra mayor consideración:

COMPAÑÍA ELÉCTRICA EL PLATANAL S.A. ("CELEPSA") con Registro Único de Contribuyente N° 20512481125, con domicilio en Carlos Villarán 514, Urbanización Santa Catalina, La Victoria, Lima; debidamente representada por su apoderado, el Sr. Carlos Enrique Adrianzén Panduro, identificado con Documento Nacional de Identidad N° 40115114, según poder inscrito en la Partida Electrónica N° 11847780 del registro de Personas Jurídicas de Lima; ante ustedes nos presentamos en calidad de titulares de la Central Hidroeléctrica "El Platanal" (la "Central") y exponemos lo siguiente:

- 1. Como es de su conocimiento, con fecha 15 de marzo de 2020 se publicó el Decreto Supremo N° 044-2020-PCM a través del cual se declaró el "Estado de Emergencia Nacional por las graves circunstancias que afectan la vida de la Nación a consecuencia del brote del COVID 19" (en adelante, el "Estado de Emergencia"), el cual se mantiene vigente hasta el 31 de julio del presente año.
- 2. En cumplimiento del numeral 7.2.4.3 ("Control de Densidad del Camarón de Río") de la Sección 7 ("Programa de Monitoreo") del Estudio de Impacto Ambiental de la Central Hidroeléctrica "El Platanal" (en adelante, el "EIA"), aprobado mediante Oficio N° 519-99-MITINCI-VMI-DNI-DAN de fecha 23 de agosto de 1999, en el mes de julio de cada año CELEPSA debe llevar a cabo el monitoreo cuantitativo de camarones (en adelante, el "Monitoreo"), obligación que ha venido cumpliendo oportunamente a lo largo de la fase operativa de la Central.

Sin embargo, <u>en el presente año no será posible llevar a cabo el Monitoreo en el mes de julio ante el brote del COVID-19 y las estrictas medidas sanitarias que se deben cumplir en el marco del Estado de Emergencia para prevenir el contagio del citado virus.</u>

3. Tal como se desprende de las comunicaciones que se adjuntan en calidad de Anexo N° 1, las asociaciones locales de camaroneros con las que habitualmente realizamos el Monitoreo han solicitado que se proceda a la reprogramación de dicha actividad ante los riesgos asociados al COVID-19.

Al respecto, es importante tener presente que la metodología de monitoreo empleada para el control de camarones requiere necesariamente de la intervención de los camaroneros locales para asegurar la adecuada y segura colecta de individuos, así como la estimación poblacional de dicho recurso. Inclusive, cabe señalar que el propio estudio de actualización del EIA, presentado el 21 de enero de 2019 ante el Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles – SENACE, precisa la importancia de contar con pescadores experimentados para la adecuada ejecución del Monitoreo.

- 4. Adicionalmente, debemos señalar que -de llevarse a cabo el Monitoreo- sería sumamente complicado garantizar un adecuado distanciamiento social, situación que expondría al personal requerido para su ejecución (entre 15 y 18 personas, aproximadamente) a un riesgo sanitario que debe ser evitado en salvaguarda de la salud de la población y de nuestros trabajadores.
- 5. Por tanto, a través de la presente comunicación ponemos en su conocimiento la suspensión del monitoreo de camarones correspondiente a julio 2020 como consecuencia de los riesgos asociados a su ejecución en el contexto del COVID-19.
- 6. Agradeceremos se sirvan tener presente lo expuesto en el marco de futuras acciones de supervisión, teniendo en cuenta además que el artículo 257° del Texto Único Ordenado de la Ley del Procedimiento Administrativo General, aprobado por Decreto Supremo N° 004-2019-JUS, establece expresamente que la comisión de infracción (ej. incumplimiento, cumplimiento parcial o cumplimiento tardío de un compromiso ambiental) como consecuencia de un evento de fuerza mayor debidamente comprobado (como es el caso del brote del COVID-19 y sus riesgos asociados) constituye una de condición eximente de responsabilidad.

Sin otro particular, nos despedimos de ustedes agradeciendo de antemano la atención que brinden a la presente.

Atentamente,

rique Adrianzén Panduro Gerente de Asuntos Ambientales e Institucionales Compañía Eléctrica El Platanal S.A.

Anexo Nº 01

GREMIO DE RECOLECTORES DE CAMARONES DE LOS RÍOS DE LA PROVINCIA DE CAÑETE

GR

Ruc Nº 20491291223

Fundada el 28 de Set. de 1986 – Reconocido por R.D. Nº 010 – 87 – PE/DGAAC del 23 de Set. de 1980 01706

Registro Público Título Nº 2005 – 000000187 y Nº Partida 06000192

Cañete, 15 de julio de 2020

Señores, COMPAÑÍA ELÉCTRICA EI PLATANAL S.A.

Con sumo respecto nos dirigimos a ustedes, a fin de manifestarles que, habiendo llegado a julio, mes en el que habitualmente requieren de nuestro apoyo para realizar el monitoreo de camarones en el río Cañete, solicitamos se sirvan reprogramar dicha actividad debido a la grave situación del coronavirus (COVID19) que ha cobrado varias vidas hasta el momento.

Como es de su conocimiento, el brote del coronavirus genera mucho riesgo para las personas involucradas en el monitoreo señalado.

Agradeceremos tengan presente lo solicitado a fin de resguardar y preservar la salud de los camaroneros y sus familias.

Quedamos muy agradecidos.

Atentamente.

Presidente

Miguel Angel Cuadros Gutierrez

DNI: 40506013

Celular: 910-552041

Año de la universalización y la salud

OFICIO Nº024-2020-ASC.S.L. P

Lunahuana, 16 de julio de 2020

Señores, COMPAÑÍA ELÉCTRICA EI PLATANAL S.A.

Con sumo respecto nos dirigimos a ustedes, a fin de manifestaries que, habiendo llegado a julio, mes en el que habitualmente requieren de nuestro apoyo para realizar el monitoreo de camarones en el río Cañete, solicitamos se sirvan reprogramar dicha actividad debido a la grave situación del coronavirus (COVID19) que ha cobrado varias vidas hasta el momento.

Como es de su conocimiento, el brote del coronavirus genera mucho riesgo para las personas involucradas en el monitoreo señalado.

Agradeceremos tengan presente lo solicitado a fin de resguardar y preservar la salud de los camaroneros y sus familias.

Quedamos muy agradecidos.

Atentamente,

JUAN LEVANO ALCALA PRESIDENTE DE LA ASC

PRESIDENTE

San Vicente - Cañete - Lima R.D.R. Nº 083-2009-DIREPRO-LIMA/Extracción y Procesamiento Pesquero

Cañete, 14 de julio de 2020

Señores, COMPAÑÍA ELÉCTRICA EI PLATANAL S.A.

Con sumo respecto nos dirigimos a ustedes, a fin de manifestarles que, habiendo llegado a julio, mes en el que habitualmente requieren de nuestro apoyo para realizar el monitoreo de camarones en el río Cañete, solicitamos se sirvan reprogramar dicha actividad debido a la grave situación del coronavirus (COVID19) que ha cobrado varias vidas hasta el momento.

Como es de su conocimiento, el brote del coronavirus genera mucho riesgo para las personas involucradas en el monitoreo señalado.

Agradeceremos tengan presente lo solicitado a fin de resguardar y preservar la salud de los camaroneros y sus familias.

Quedamos muy agradecidos.

Atentamente,

LUIS ALBERTO/ZANABRIA ARONI

Presidente

0001709

INFORME

Número 39

Octubre, 2020 Lima - Perú

Trigésimo Noveno Monitoreo Biológico del Camarón de Río (Cryphiops caementarius) en el Río Cañete.

EQUIPO DE ESPECIALISTAS

Jefe de Proyecto de Monitoreo Hidrobiológico

Ing. Pesquero Ana Cecilia Muñoz Córdova Celepsa

Programa y Evaluación de Monitoreo

Ing. Pesquero Ana Cecilia Muñoz Córdova Tec. Abel Sulca Riveros. Celepsa

Representante de Compañía Eléctrica El Platanal S.A.

Ing. Carlos Adrianzen Panduro Gerente de Asuntos Ambientales e Interinstitucionales Celepsa

INDICE

I.	GENE	RALIDADES	4
II.	OBJ	ETIVO GENERAL	7
2.	1. O	bjetivos Específicos	7
III.	MAI	RCO LEGAL	8
IV.	EST	ACIONES DE MONITOREO	8
4.	1. Fi	chas de Estaciones de Monitoreo	10
v.	MET	ODOLOGÍA DE MONITOREO	19
5.	1. M	uestreo de Camarones	19
	5.1.1.	Método de muestreo:	19
	5.1.2.	Área Barrida	19
	5.1.3.	Cálculo del Área de Estudio	20
	5.1.4.	Cálculo de Biomasa y Densidad	20
	5.1.5.	Tamaño de Muestra	21
5.2	2. P a	rámetros Físico Químicos:	21
5.3	3. M	uestreo de Plancton	21
	5.3.1.	Fitoplancton:	22
	5.3.2.	Zooplancton:	22
5.4	4. M	uestreo de Bentos	23
	5.4.1.	Macroinvertebrados Bentónicos:	23
	5.4.2.	Fitoplancton Bentónico:	26
5.5 P o		ecnicas Multivariadas de Análisis para la Relación entre Comunidades sobre la de camarón y Calidad de agua en base a Bio-indicadores	
	5.5.1. Cañete	Análisis de Frecuencias de Tamaños de Camarón de río a lo largo del río . 27	
	5.5.2.	Análisis del efecto ambiental sobre la distribución de tamaños	27
	5.5.3.	Análisis de Calidad de Agua en base a Indicadores Biológicos	27
	5.5.4.	Análisis del Efecto Ambiental sobre el Camarón de río.	27
5.0	6. P €	ersonal de Monitoreo	28
VI. BIO		ULTADOS DE LA EVALUACIÓN DE LAS ESTACIONES DE MONITOREO O	28
6.	1. Ev	valuación del Camarón de río (Cryphiops caemenatrius)	29
	6.1.1.	Tamaño de muestra	29
	6.1.2.	Proporción de Sexos	29
	6.1.2.	Madurez Gonadal	31

6.1	1.3.	Composición de Tallas	33
6.3	1.4.	Abundancia y Biomasa	34
		LTADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LAS S DE MONITOREO	39
7.1.	Ten	nperatura (ºC):	39
7.2.	pН	- (UpH):	40
7.3.	Oxí	geno (mg/L):	41
7.4.	Dui	reza (mg/L):	42
7.5.	CO	2 (mg/L):	43
7.6.	Tur	bidez (NTU):	43
VIII.	RES	SULTADOS DE LA EVALUACIÓN DEL PLANCTON	44
8.1.	Mu	estreo Biológico	44
8.2.	Fito	plancton	44
8.2	2.1.	Riqueza y Abundancia de las estaciones muestreadas	46
8.2	2.2.	Índices de Diversidad e Indicadores Biológicos	48
8.3.	Zoo	plancton	49
8.3	3.1.	Riqueza y Abundancia de las estaciones muestreadas	50
8.3	3.2.	Índices de Diversidad e Indicadores Biológicos	52
IX.	RESU	LTADOS DE LA EVALUACIÓN DEL BENTOS	53
9.1.	Mu	estreo Biológico	53
9.2.	Ma	croinvertebrados bentónicos	53
9.2	2.1.	Riqueza y Abundancia de las estaciones muestreadas	55
9.2	2.2.	Índices de Diversidad Biológica	57
9.3.	Fito	plancton bentónico	58
9.3	3.1.	Riqueza y Abundancia de las estaciones muestreadas	60
9.3	3.2.	Índices de Diversidad Biológica	61
COMU	JNIDA	AS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTRE DES SOBRE LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGUA EN INDICADORES	(2
10.1.		análisis del efecto ambiental sobre el camarón de rio	
10.1.		análisis de calidad de agua en base a indicadores biológicos	
XI.		CLUSIONES	
XII.		MENDACIONES	
XIII.		LIOGRAFÍA	
XIV.		EXOS	

FIGURA

Figura	1. Ubicación de las Estaciones de Monitoreo	9
Figura	2. Camaroneros Alineados para Aplicar la Metodología de Pesca	.20
Figura	3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que son	
arrastra	adas por la corriente del río	.22
Figura	4. Personal colaborador en el monitoreo - Octubre 2020.	.28
Figura	5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos anuales	.32
Figura	6. Distribución Poblacional por estratos – octubre 2020	.33
Figura	7. Biomasa y Abundancia tallas - octubre 2020	.34
Figura	8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados desde octubra	re
2004 a d	octubre 2020	.37
Figura	9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados desde	
octubre	2004 a octubre 2020	.38
Figura	10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo octubre 2020	.40
Figura	11. Registro del pH del agua, por estratos en el monitoreo octubre 2020	.41
Figura	12. Registro del oxígeno en el agua, por estratos en el monitoreo octubre 2020	.42
•	13. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo octubre 2020	
Figura	14. Registro de CO ₂ (mg/L) en el agua, por estratos en el monitoreo octubre 2020	.43
Figura	15. Registro de Turbidez (NTU) en el agua, por estratos en el monitoreo octubre 2020	.44
Figura	16. Porcentaje de divisiones de fitoplancton identificado – octubre 2020	.45
Figura	17. Abundancia relativa (%) de las especies de fitoplancton en las estaciones muestreadas -	
	2020	
Figura	18. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - octubre 2020	.46
Figura	19. Fragillaria capucina Figura 20. Cymbella affinis	.47
Ü	21. Pediastrum boryanum (cenobio) Figura 22. Cosmarium botrytis	
_	23. Oscillatoria tenuis (filamento).	
_	24. Índices de diversidad aplicados al fitoplancton – octubre 2020	
	25. Porcentaje de divisiones de zooplancton identificado – octubre 2020	.49
•	26. Abundancia relativa (%) de las especies de zooplancton en las estaciones muestreadas -	
	2020	
-	27. Abundancia y riqueza del zooplancton en las estaciones muestreadas - octubre 2019	
O	28. Centropyxis sp	
Ü	29. Chydorus sp. Figura 30. Hydrozetes sp	
Ü	31. Rotaria sp. Figura 32. Ascomorpha sp	
•	33. Índices de diversidad aplicados al zooplancton – octubre 2020	
U	34. Macroinvertebrados bentónicos identificados en octubre 2020	
Ü	35. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las estaciones	
	eadas - octubre 2020	
O	36. Riqueza y abundancia de las especies de bentos octubre 2020	
O	37. Microcylloepus sp.	
Ü	38. Nais sp.	
Ü	39. Physa venustula	
Ü	40. Mononchus sp.	
Figura	41. Dugesia sp	.57

Figura 42. Índices de diversidad biológica de macroinvertebrados bentónicos encontrado en e	el
presente monitoreo – octubre 2020	57
Figura 43. % EPT de macroinvertebrados bentónicos encontrados para el presente monitoreo – octubre	?
2020	58
Figura 44. Porcentaje de divisiones de fitoplancton bentónico identificado – octubre 2020	59
Figura 45. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estaciones	
muestreadas - octubre 2020	59
Figura 46. Abundancia y riqueza del fitoplancton bentónico en las estaciones muestreadas – octubre	
2020	60
Figura 47. Fragillaria capucina	60
Figura 48. Pediastrum boryanum (cenobio)	61
Figura 49. Oscillatoria tenuis (filamento)	61
Figura 50. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – octubre 2020	62
Figura 51. IDG de fitoplancton bentónicos encontrados para el presente monitoreo octubre 2020	63
Figura 52. Frecuencia de tamaños por sexo (machos) y estación de muestreo	64
Figura 53. Frecuencia de tamaños por sexo (hembras) y estación de muestreo	65
Figura 54. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo	65
Figura 55. Abundancia de hembras y machos por estación de muestreo	67
Figura 56. Análisis de Correspondencia Canónica abundancia del camarón, variables ambientales e	
indicadores biológicos Monitoreo octubre 2020	68
Figura 57. Parámetros de monitoreo por estaciones octubre 2020	70
Figura 58. Abundancia de la comunidad del bentos por estaciones de muestreo	72
Figura 59. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton	73
Figura 60. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos	74
Figura 61. Programa de Monitoreo	81
Figura 62. Procedimiento de muestreo	97
Figura 63. Muestras de camarón – Estación Huallampi	97
Figura 64. Conteo del camarón recolectado	98
Figura 65. Medida del peso del camarón	98
Figura 66. Extracción del camarón en el río Cañete	99
Figura 67. Grupo de trabajo – Octubre 2020	99

TABLAS

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Octubre 2020	8
Tabla 2. Actividades Estación N° 1 del Monitoreo – Octubre 2020	10
Tabla 3. Actividades Estación N° 2 del Monitoreo – Octubre 2020	
Tabla 4. Actividades Estación N° 5 del Monitoreo – Octubre 2020	12
Tabla 5. Actividades Estación N° 10 del Monitoreo – Octubre 2020	13
Tabla 6. Actividades Estación N° 13 del Monitoreo – Octubre 2020	14
Tabla 7. Actividades Estación N° 16 del Monitoreo – Octubre 2020	15
Tabla 8. Actividades Estación N° 19 del Monitoreo – Octubre 2020	16
Tabla 9. Actividades Estación N° 23 del Monitoreo – Octubre 2020	17
Tabla 10. Actividades Estación N° 25 del Monitoreo – Octubre 2020	
Tabla 11. Metodología de Muestreo	
Tabla 12. Metodologías de Muestreo para Plancton Según Standard Methods	21
Tabla 13. Metodologías de Muestreo para Bentos Según Standard Methods	
Tabla 14. Calidad de las Aguas según él %EPT	
Tabla 15. Rangos del Índice de diversidad de Shannon-Wiener (H')	25
Tabla 16. Rangos del Índice de biodiversidad de Margalef (DMg)	25
Tabla 17. Rangos del Índice General Diatómico (IDG)	
Tabla 18. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de Significancia d	lel
95%	29
Tabla 19. Número de Machos y Hembras, Porcentaje (%) y Proporción Sexual por estrato altitudir	ıal29
Tabla 20. Porcentaje de machos y hembras desde octubre 2007 a octubre 2020	
Tabla 21. Madurez gonadal de machos y hembras por estratos altitudinales – octubre 2020	31
Tabla 22. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de octubre de	el32
Tabla 23. Número de Individuos por Intervalo de Longitud según Estratos	
Tabla 24. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud	34
Tabla 25. Abundancia y Biomasa por estrato altitudinal	
Tabla 26. Valores de los parámetros físico químicos octubre 2020	
Tabla 27. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – octubre 2019.	62
Tabla 28. Datos Características de las Estacione de muestreo	
Tabla 29. Resultados de los Muestreos Biométricos	
Tabla 29. Resultados de los Muestreos Biométricos	
Tabla 31. Número de Individuos Capturados por Pescador en cada Estación de muestreo	91
Tabla 32. Biomasa Canturada por Pescador en cada Estación de Muestreo	92

I. GENERALIDADES

El presente Monitoreo biológico, es realizado como parte de los compromisos derivados del Estudio de Impacto Ambiental del Proyecto Hidroeléctrico Integral "El Platanal", de la Compañía Eléctrica El Platanal S.A. (CELEPSA), para realizarse en el río Cañete, aprobado por la Dirección de Asuntos Ambientales Normativos y Oficializada con Oficio Nº 519-99-MITINCI-VMI-DNI-DAN del 23 de agosto del 1999. Dicha aprobación contó con la recomendación de la Dirección de Asuntos Ambientales (DGAA) del Ministerio de Energía y Minas (Oficio Nº 174-99-EM/DGAA del 12 de julio del 1999).

El Programa de Monitoreo Biológico se inicia con la Línea Base del Camarón de Río (*Cryphiops caementarius*) en julio del 2001. Dicha evaluación fue la primera del Programa en referencia, la cual contempla la realización de evaluaciones anuales en los meses de julio y octubre, para cada fase del proyecto (fase previa, fase de construcción y fase de operación), en cuatro sectores del río Cañete (Putinza – Capillucas, Quebrada Chicchicay – Chavín, Quebrada Riachuelo – Catahuasi, San Juan y San Juanito). Posteriormente debido a la naturaleza de la especie se amplió hacia los sectores de Alto Húngara – Caltopa y Boca de Río.

Compañía Eléctrica El Platanal S.A. (CELEPSA) ejecutó el Trigésimo Noveno Monitoreo de Camarón de río (*Cryphiops caementarius*), correspondiente a la Fase de Operación y único monitoreo del 2020, debido a la coyuntura actual por la que se pasó a causa de la Pandemia por el COVID 19, apelamos al DECRETO LEGISLATIVO N° 1500 del 2020, donde Indica:

Artículo 7. Reportes de información de carácter ambiental

7.1. Exonérase a los administrados de la obligación de presentar a las entidades con competencia ambiental, los reportes, monitoreos y cualquier otra información de carácter ambiental o social, que implique trabajo de campo, así como de la realización de actividades necesarias para dicho fin; con excepción de aquellos casos en que: i) se cuente con dicha información previamente; ii) se evidencie una circunstancia que represente un inminente peligro o alto riesgo de producirse un daño grave a los componentes ambientales agua, aire y suelo; a los recursos naturales; a la salud de las personas y a las acciones destinadas a mitigar las causas que generen la degradación o daño ambiental; o iii) se refieran a emergencias ambientales o catastróficas.

Por lo que, a pesar de estar exonerados de efectuar los monitoreos, se decidió ejecutar uno de ellos de manera parcial para no perder la tendencia del recurso y su estado actual en este periodo, cuyos resultados consisten en evaluar las condiciones biológicas en:

- Nueve estratos determinados para muestras de camarones (detallándose los parámetros poblacionales: número de individuos o abundancia, biomasa, proporción sexual total y condición reproductiva de la población) y agua (Parámetros físico-químicos);
- Nueve estratos determinados para plancton (fitoplancton y zooplancton) y bentos (macroinvertebrados bentónicas y fitoplancton bentónico).

II. OBJETIVO GENERAL

Determinar los principales parámetros de la población de camarón de río (*Cryphiops caementarius*) presente en los sectores del río Cañete comprendidos entre los 0 y 1700 m.s.n.m. en nuestra etapa de Operación.

2.1. Objetivos Específicos

Determinar la abundancia y biomasa del camarón de río por sexo y estrato altitudinal.

- Determinar la proporción sexual total y por estrato altitudinal.
- Determinar la estructura de tallas por estrato altitudinal.
- Determinar la condición reproductiva de la población.
- Obtener los principales parámetros físicos-químicos en los sectores evaluados.
- Determinar los principales indicadores biológicos en relación al recurso camarón de río.
- Analizar cualitativa y cuantitativamente el plancton (Fitoplancton y zooplancton) y bentos (Fitoplancton bentónico y macroinvertebrados bentónicos) relacionando con la alimentación del camarón de río (*Cryphiops caementarius*).

III. MARCO LEGAL

En la legislación ambiental vigente, la actividad eléctrica, se realiza en el marco de lo establecido en la Ley de Concesiones Eléctricas (D.L. N° 25844), la Ley General del Ambiente Ley N° 28611, el Decreto legislativo 757 para el Crecimiento de la Inversión Privada, y disposiciones legales bajo el concepto de Desarrollo Sostenible de los recursos naturales.

Normatividad complementaria como el Reglamento para la Protección Ambiental en las Actividades Eléctricas (D.S. N° 009-93-EM) y de las servidumbres de embalses de aguas para fines energéticos, industriales y mineros, norman la protección del ambiente por la actividad energética.

El monitoreo ambiental se realiza siguiendo el Protocolo de Monitoreo de Calidad de Agua contenida en las Guías Ambientales elaboradas por el Ministerio de Energía y Minas.

Para la calidad de agua estarán determinados por los Estándares Nacionales de Calidad Ambiental dadas en el D.S. Nº 002-2008-MINAM.

Protocolo Nacional de Monitoreo de la Calidad de los Cuerpos Naturales de Agua Superficial Resolución Jefatural N° 182-2011-ANA.

IV. ESTACIONES DE MONITOREO

De acuerdo al Plan de Manejo Ambiental del Proyecto Hidroeléctrico El Platanal y tomando las consideraciones de seguridad por la pandemia que se viene presentando en el país. El presente año se han destinado evaluar 01 punto de control en cada uno de los 09 estratos de control (Tabla 1), con sus respectivas ubicaciones (Figura 1).

Tabla 1. Sectores de Evaluación y Estaciones de Muestreo – Octubre 2020

SECTORES EVALUADOS	ALTITUD	ESTACIÓN	ESTRATOS
Pampilla	0 - 100	PAMPILLA	0 - 100
Alto Hungará	100 - 300	ALTO HUNGARA	100 - 300
Socsi	300 - 500	SOCSI	300 - 500
Catapalla	500 - 700	CATAPALLA	500 - 700
Huagil	700 - 900	HUAGIL	700 - 900
San Juanito	900 - 1100	SAN JUANITO	900 - 1100
Huallampi	1100 - 1300	HUALLAMPI	1100 - 1300
Puente Chavin	1300 - 1500	PUENTE CHAVIN	1300 - 1500
Capillucas - Calachota	1500 - 1700	CAPILLUCAS	1500 - 1700

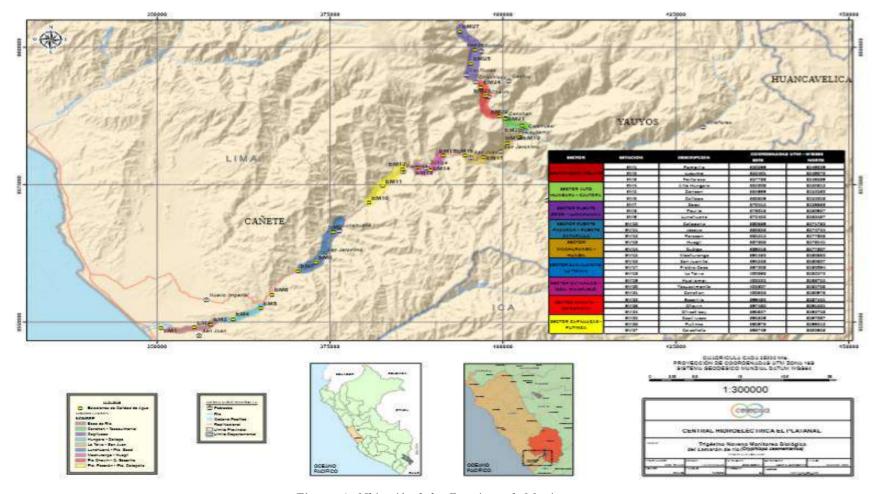


Figura 1. Ubicación de las Estaciones de Monitoreo

Dágina 1

4.1. Fichas de Estaciones de Monitoreo

Tabla 2. Actividades Estación N° 1 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E-1	-1									
Nombre de la Empresa	Compañía I	Compañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Pampilla	Pampilla									
Ubicación					Coordenada	ns					
Región	Lima				UTM E		351495				
Provincia	Cañete				UTM S		8548755				
Sector Evaluado	Pampilla -	Fortaleza			Fecha		20/10/2020				
Referencia	0 a 100 m.s.:	n.m.			Hora		11:00				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez(NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	х	х	
Muestras Biológicas	E-01BC	E-01BF	E-01BZ	E-01BFb	E-01Bmb						
Biológico Camarón	x										
Biológico Fitoplancton		х									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				х							
Biológico Macroinvertebrados Bentónicos					х						

Tabla 3. Actividades Estación N° 2 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E-4	E-4									
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.									
Zona de Muestreo	Alto Hungará										
Ubicación	-				Coorde	nadas	•				
Región	Lima		UTM E		362981						
Provincia	Cañete				UTM S		8551469				
Sector Evaluado	Alto Hunga	rá - Caltopa			Fecha		21/10/2020				
Referencia	100 a 200 m.	s.n.m.			Hora		12:45				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	x	х	х	х	х	х	х	X	х	
Muestras Biológicas	E-04BC										
Biológico Camarón	х										
Biológico Fitoplancton											
Biológico Zooplancton									·		
Biológico Fitoplancton Bentónico											
Biológico Macroinvertebrados Bentónicos											

Tabla 4. Actividades Estación N° 5 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 7	E- 7										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Puente Socs	Puente Socsi										
Ubicación					Coordenadas	3						
Región	Lima				UTM E		369518					
Provincia	Cañete				UTM S		8558703					
Sector Evaluado	Pte. Socsi - I	Lunahúana			Fecha		21/10/2020					
Referencia	300 a 500 m.	s.n.m.			Hora 11:42							
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	х	x		
Muestras Biológicas	E-07BC	E-07BF	E-07BZ	E-07BFb	E-07Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		х										
Biológico Zooplancton		x										
Biológico Fitoplancton Bentónico				х								
Biológico Macroinvertebrados Bentónicos					X							

 $\frac{13}{2}$

Tabla 5. Actividades Estación N° 10 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 10	i- 10										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Puente Cata	Puente Catapalla										
Ubicación					Coorde	nadas						
Región	Lima				UTM E		380864					
Provincia	Cañete				UTM S		8572141					
Sector Evaluado	Pte. Catapal	la - Pte. Paca	rán		Fecha		24/10/2020	24/10/2020				
Referencia	500 a 700 m.	s.n.m.			Hora		15:36					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	x	х	x	х	х	x	х		
Muestras Biológicas	E-10BC											
Biológico Camarón	х											
Biológico Fitoplancton												
Biológico Zooplancton												
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 6. Actividades Estación N° 13 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 13	i- 13										
Nombre de la Empresa	Compañía I	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	Huagil				1							
Ubicación					Coordenadas	S						
Región	Lima				UTM E		387357					
Provincia	Cañete				UTM S		8578133					
Sector Evaluado	Huagil - Ma	ichuranga			Fecha		23/10/2020					
Referencia	700 a 900 m	.s.n.m.			Hora		09:15	09:15				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	х	х	х	х	х	х	Х	х		
Muestras Biológicas	E-13BC	E-13BF	E-13BZ	E-13BFb	E-13Bmb							
Biológico Camarón	х											
Biológico Fitoplancton		x										
Biológico Zooplancton		x										
Biológico Fitoplancton Bentónico				x								
Biológico Macroinvertebrados Bentónicos					x							

Tabla 7. Actividades Estación N° 16 del Monitoreo – Octubre 2020

celepsa		ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 16	E- 16										
Nombre de la Empresa	Compañía E	Compañía Eléctrica El Platanal S.A.										
Zona de Muestreo	San Juanito											
Ubicación	_				Coorde	enadas						
Región	Lima		UTM E	l I	394362							
Provincia	Cañete	Cañete					8580261					
Sector Evaluado	San Juanito	- La Tolva			Fecha		23/10/2020	23/10/2020				
Referencia	900 a 1 100 r	n.s.n.m.			Hora		15:45					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	pН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)		
	х	х	Х	х	х	x	х	х	х	х		
Muestras Biológicas	E-16BC											
Biológico Camarón	Х											
Biológico Fitoplancton												
Biológico Zooplancton			·									
Biológico Fitoplancton Bentónico												
Biológico Macroinvertebrados Bentónicos												

Tabla 8. Actividades Estación N° 19 del Monitoreo – Octubre 2020

celepsa	ESTACIÓN DE MONITOREO										
Estación de Monitoreo	E- 19	E- 19									
Nombre de la Empresa	Compañía E	Eléctrica El P	latanal S.A.								
Zona de Muestreo	Huayllampi	i									
Ubicación					Coordenadas	S					
Región	Lima				UTM E		401629)			
Provincia	Cañete				UTM S 85831		8583188	8583188			
Sector Evaluado	E-21Bmb				Fecha	22/10/2020					
Referencia	1 100 a 1 300	m.s.n.m.			Hora	09:41					
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)	
	х	х	х	х	х	х	х	х	x	х	
Muestras Biológicas	E-19BC	E-19BF	E-19BZ	E-19BFb	E-19Bmb						
Biológico Camarón	х										
Biológico Fitoplancton		x									
Biológico Zooplancton			х								
Biológico Fitoplancton Bentónico				Х					_		
Biológico Macroinvertebrados Bentónicos					x						

Tabla 9. Actividades Estación N° 23 del Monitoreo – Octubre 2020

celepsa	ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 23	E- 23								
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Pte. Chavín									
Ubicación					Coordenadas					
Región	Lima				UTM E		397486			
Provincia	Cañete				UTM S 8591178		8591178	91178		
Sector Evaluado	Escarilla - C	Escarilla - Chicchicay			Fecha		22/10/2020			
Referencia	1 300 a 1 500	m.s.n.m.			Hora	09:54				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humedad (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	х	х	х	х	х	х	х	х	х
Muestras Biológicas	E-23BC	E-23BF	E-23BZ	E-23BFb	E-23Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		x								
Biológico Zooplancton			х							
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					х					

Tabla 10. Actividades Estación N° 25 del Monitoreo – Octubre 2020

celepsa	ESTACIÓN DE MONITOREO									
Estación de Monitoreo	E- 25	E- 25								
Nombre de la Empresa	Compañía I	Eléctrica El P	latanal S.A.							
Zona de Muestreo	Capillucas									
Ubicación		Coordenadas								
Región	Lima			UTM E		395327				
Provincia	Cañete	Cañete			UTM S 85		8597239			
Sector Evaluado	Capillucas -	Capillucas - Calachota			Fecha		22/10/2020			
Referencia	1 500 a 1 700	m.s.n.m.			Hora	13:29				
Medición de Parámetros Físico Químicos	T. Amb (C°)	T. Agua (C°)	Velocidad (m/s)	Humeda (%)	рН	Oxígeno (ppm)	CO2 (mg/L)	Dureza (ppm)	Turbidez (NTU)	Caudal (m3/s)
	х	x	х	х	х	х	х	х	х	х
Muestras Biológicas	E-25BC	E-25BF	E-25BZ	E-25BFb	E-25Bmb					
Biológico Camarón	х									
Biológico Fitoplancton		x								
Biológico Zooplancton	x									
Biológico Fitoplancton Bentónico				х						
Biológico Macroinvertebrados Bentónicos					x					

V. METODOLOGÍA DE MONITOREO

La presente evaluación se llevó a cabo del 20 al 24 de octubre 2020, identificando las condiciones ambientales y bioecológicas, en las que se encuentra las estaciones de monitoreo establecidas en la Línea Base del Camarón de río (*Cryphiops caementarius*) del Proyecto Hidroeléctrico "El Platanal", a través de la evaluación del camarón de río (*Cryphiops caementarius*), determinación de la calidad del agua de río y la caracterización de plancton y bentos.

Las ubicaciones de las estaciones de monitoreo fueron realizadas mediante la ayuda de un GPSmap 76CSx marca GARMIN, en la cual se registró las características del cuerpo de agua, tomando en cuenta el ancho y profundidad promedios, sección longitudinal del río muestreado, tipo de fondo, de vegetación ribereña y transparencia del sector de río monitoreado.

Las altitudes de las estaciones de monitoreo fluctuaron entre 0 m.s.n.m. (Pampilla) y 1700 m.s.n.m. (Capillucas).

5.1. Muestreo de Camarones

5.1.1. Método de muestreo:

La estimación de la población presente en el área de estudio se basó en la aplicación del método del área barrida (Espino, 1984), estimándose las densidades en abundancia (número de individuos) y biomasa (peso de individuos) por estación, y extrapolando los datos a cada estrato (Tabla 11).

Tabla 11. Metodología de Muestreo

Parámetros	Metodología
Camarones	Aplicación del Método del Área Barrida – Modificado (Espino, 1984)
iente: Espino, 1984	

5.1.2. Área Barrida

En cada sección de evaluación del cauce, se consideró una longitud de 40 m, y el ancho promedio de la misma; la colecta de muestras se realizó mediante el método de buceo diurno, ocho pescadores experimentados realizaron las capturas de camarones, los cuales fueron contados, pesados, medidos y sexados en campo. En la colecta, se contabiliza también los camarones que no llegan a ser capturados.

Debemos indicar que CELEPSA realizó una selección muy exhaustiva de los extractores con los que trabajo para la captura de la muestra, los cuales fueron elegidos por su esfuerzo de pesca, contratando a los de mayor capacidad, lo que ha permitido lograr una estimación adecuada de las poblaciones en nuestros puntos de muestreo en el presente monitoreo.

Se debe considerar la variabilidad que existe al usar a un extractor como aparejo de pesca, pues sus resultados varían de acuerdo a la capacidad de pesca del mismo, motivo por el que se selecciona y trabaja con el mismo grupo humano mientras su nivel de esfuerzo de pesca se mantenga (Figura 2).

Figura 2. Camaroneros Alineados para Aplicar la Metodología de Pesca

5.1.3. Cálculo del Área de Estudio

El área del espejo de agua y profundidad promedio de cada estrato se calculó sobre la base de la longitud del curso de agua (definido por cartografía) y el ancho promedio del lecho (establecido en el terreno). Se tuvo en cuenta los meandros y ramales del río para realizar las correcciones en el área de cada estrato. El río presentó un cauce bastante homogéneo entre los estratos $0-1\,700\,$ m.s.n.m., teniéndose para este año el encausamiento y limpieza de rio en los estratos de $0-500\,$ m.s.n.m., por parte del Gobierno Regional homogenizando el área sin ramales como en años anteriores.

Cabe destacar que los valores son estimados y que varían dependiendo de las estaciones del año y fluctuaciones del caudal del río. Por lo que desde el 2014 se ha presentado un incremento del área de espejo de agua en los sectores bajos como Pampilla debido a la operación del embalse Paucarcocha – Celepsa, lo que permite mantener el incremento del área hasta la fecha, generando como consecuencia una mayor habitad y mejores condiciones de habitabilidad para el camarón de río.

5.1.4. Cálculo de Biomasa y Densidad

La biomasa se estimó considerando el área disponible de evaluación y la densidad (g/m2), aplicando la siguiente ecuación:

BIOMASA = Área disponible (m²) / Densidad (g/m²)

El área disponible (m²) es el porcentaje del área total del río que posee las condiciones adecuadas del hábitat de los camarones mediante una estimación por medio de la observación directa del ancho y longitud del transecto evaluado (40 m), esta área se calculó para cada estación de monitoreo.

La densidad se calculó considerando dos datos: las capturas de los camarones obtenidas en peso (gramos) y el número de individuos por área total disponible (Ind/m²). El peso total de los individuos capturados (gramos) por unidad de superficie (m²) se calculó en función al esfuerzo pesquero (CPUE) en el área de pesca. Para determinar el CPUE se contabilizó los camarones obtenidos por cada camaronero en cada estación de monitoreo, así como los ejemplares que escaparon de sus manos.

Para obtener la frecuencia de tallas y la relación talla - peso se registró la longitud (milímetros), peso (gramos), sexo y el desarrollo gonadal se clasificó según los estadios definidos por *Pérez et*

al. (1977), citado en *Viacava et al.* (1978) de cada individuo capturado por estación de monitoreo y para el total de las estaciones.

5.1.5. Tamaño de Muestra

Examinar la población entera, lo cual puede resultar físicamente imposible o no práctico, puede examinarse una muestra de la población con el propósito de inferir los resultados encontrados. Una técnica para obtener muestras representativas de la población es el muestreo aleatorio, ya que es un proceso que asegura en cualquier momento la misma o igual probabilidad de ser incluido en la muestra a todos los elementos que pertenezcan a la población en dicho momento.

Si la población es finita, es decir conocemos el total de la población y deseásemos saber cuántos del total tendremos que estudiar, la respuesta se representa en la siguiente formula:

$$n = \frac{N * Z_a^2 * p * q}{d^2 * (N-1) + Z_a^2 * p * q}$$

5.2. Parámetros Físico Químicos:

Para la ubicación de las estaciones de monitoreo previamente determinadas, se utilizó un GPSmap 76CSx marca GARMIN y para los análisis de agua su uso un kit FF1A, un multiparámetro y un Turbidimetro Digital, donde se midieron los siguientes parámetros físico-químicos del agua:

- Oxígeno Disuelto (mg/L)
- Dureza (mg/L)
- Temperatura del agua (°C)
- pH (UpH)
- Nitritos (mg/L)
- CO₂ (mg/L)
- Turbidez (NTU)

Además de estos parámetros, se determinó visualmente otras características del hábitat de las especies evaluadas como: ancho y profundidad, tipo de fondo, color, transparencia, etc.

5.3. Muestreo de Plancton

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 12. Metodologías de Muestreo para Plancton Según Standard Methods

Parámetros	Metodología
Fitoplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200F)
Zooplancton	APHA-AWWA-WPCF – Standard Methods (Section 10200B – 10200G)

Fuente: APHA-AWWA-WEF, 2012

5.3.1. **Fitoplancton:**

Para la colección de fitoplancton se tuvo en cuenta el tipo de cuerpo de agua de donde se toma la muestra.

Las aguas claras o cristalinas son oligotróficas, o sea, que tienen muy baja densidad de fitoplancton, por lo que es colocado en el medio acuático concentrándose en la red vertido en un frasco, para los análisis en las estaciones.

Las muestras de Fitoplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de 20 µm de abertura de malla. La red fue colocada en el río, durante 20 minutos. Con estos datos y conociendo además el diámetro de la boca

de la red planctónica, se calcula el volumen filtrado.

Las muestras se colectan en frascos de 500 mL debidamente rotuladas con la estación respectiva, para su preservación se le adiciona Lugol.

Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de N° cel./Litro. (Figura 3).

Figura 3. Colecta de plancton. mediante las redes de fitoplancton y zooplancton que son arrastradas por la corriente del río.

5.3.2. **Zooplancton:**

Para colectar zooplancton, se tomó en cuenta las mismas consideraciones que para fitoplancton. Por lo general, las poblaciones de zooplancton se distribuyen en estratos, lo que añade cierta dificultad a la interpretación de los resultados.

Las muestras de zooplancton fueron tomadas haciendo pasar agua de río a través de una red de nylon de $10~\mu m$ de abertura de malla. La red fue colocada en el río, durante 20~minutos. Con estos datos y conociendo además el diámetro de la boca de la red planctónica, se calcula el volumen filtrado. Las muestras se colectan en frascos de 500~mL debidamente rotuladas con la estación respectiva,

para su preservación se le adiciona Formalina al 4% y/o alcohol al 96°. Ya en el laboratorio, estas muestras son concentradas y analizadas en un recuento de Org./m³.

5.4. Muestreo de Bentos

La metodología propuesta para el análisis biológico es la publicada en el Standard Methods for the Examination of Water and Wastewater 22ND Edition (APHA-AWWA-WEF, 2012), como sigue:

Tabla 13. Metodologías de Muestreo para Bentos Según Standard Methods

Parámetros	Metodología
Macroinvertebrados	APHA-AWWA-WPCF – Standard Methods (Section 10500B – 10500C)
Perifiton	APHA-AWWA-WPCF – Standard Methods (Section 10300B – 10300C)

Fuente: APHA-AWWA-WEF, 2012

5.4.1. Macroinvertebrados Bentónicos:

En cada estación de monitoreo se colectaron muestras biológicas de macroinvertebrados bentónicos, las que se obtuvieron utilizando una RED SURBER con un marco de un área de 30 x 30 cm de sustrato.

Para su recolección se remueve las piedras del fondo del río, lavándolas en contra de la corriente del agua para colectarlas en un frasco con formalina al 4% y/o alcohol a 96°.

En el laboratorio la muestra es limpiada del sustrato para el reconocimiento de las especies y el conteo dado en Org./m².

Valor Indicador de los Macroinvertebrados Bentónicos

Los índices bióticos son una de las maneras más comunes de establecer la calidad biológica de los ríos. Se suelen expresar en forma de un valor numérico único que sintetiza las características de todas las especies presentes. Habitualmente consisten en la combinación de dos o tres propiedades de la asociación: la riqueza de taxa y la tolerancia/intolerancia a la contaminación para los índices cualitativos, y estos junto a la abundancia (absoluta o relativa) para los índices cuantitativos.

La mayor parte de los investigadores señalan que dentro de los grupos faunísticos que son considerados como bioindicadores de la calidad ambiental, los macroinvertebrados acuáticos son los mejores bioindicadores de la calidad del agua (Arenas, 1993; Barbour *et al.*, 1995; Figueroa, 1999; Alonso *et al.*, 2002; Fenoglio et al., 2002; Hynea & Maher, 2003; Cain *et al.*, 2004; Leiva, 2004; Alonso & Camargo, 2005).

Los macroinvertebrados bentónicos se encuentran en todo tipo de ambiente acuático de agua dulce, como ríos o lagunas, donde son importantes para el monitoreo de ese ecosistema acuático en particular (Cummnig & Klug, 1979).

El uso de los macroinvertebrados bentónicos proporciona excelentes señales sobre la calidad del agua, y al usarlos en el monitoreo, puede entender claramente el estado en que ésta se encuentra, algunos de ellos requieren agua de buena calidad para sobrevivir, otros en cambio, resisten, crecen y abundan cuando hay contaminación.

Para estimar la calidad del agua se utilizaron medidas de composición y riqueza. Las medidas de composición y riqueza incluyen número total de especies, número total de individuos, Diversidad de Shannon-Weaver (H'), Equidad de Pielou (J'), Riqueza de especies (d) y %EPT de acuerdo al criterio empleado por Egler (2002).

Índice Ecológico

%EPT (Ephemeroptera + Plecoptera + Trichoptera)

El Índice Biótico es una medida cuantitativa de la diversidad, de especies de bentos, con la información cualitativa sobre la sensibilidad ecológica de taxones individuales en una expresión numérica simple. En este caso se va utilizar el índice EPT que es la suma de la abundancia de individuos de los grupos sensible: Ephemeroptera, Plecoptera y Tricoptera entre la abundancia total de los individuos bentónicos.

Estos insectos son considerados mayormente como organismos de aguas limpias y su presencia generalmente está relacionada a aguas de buena calidad.

De acuerdo al porcentaje observado en las diferentes muestras de la presencia y magnitud de estos grupos indicadores se obtendrá una calificación del estado de conservación del ambiente acuático en estudio, según Roldan (1997).

El análisis de EPT se realizó mediante la utilización de estos tres grupos de macroinvertebrados que son indicadores de la calidad de agua, debido a que son más sensibles a la contaminación. En primer lugar, se coloca en una columna la clasificación de organismos, en una segunda columna la abundancia y una última columna con los EPT presentes.

Posteriormente los EPT presentes se dividen por la abundancia total, obteniendo un valor, el cual se lleva a una tabla (Tabla 14) de calificaciones de calidad de agua que va de muy buena a mala calidad (Carrera & Fierro 2001).

Tabla 14. Calidad de las Aguas según él %EPT

Clase	Índice EPT(%)	Calidad de Agua
I	75 % - 100%	Muy Buena
II	50% - 74%	Buena
III	25% - 49%	Regular
IV	0% - 24%	Mala

Fuente: Carrera & Fierro (2001)

Índices de Diversidad

Índice de diversidad de Shannon-Wiener (H')

Este índice es el más usado por ajustarse mejor a la distribución de los organismos en la naturaleza, es independiente del tamaño de muestra (Roldán, 1992). Esta expresión se acomoda a la distribución normal de las numerosas asociaciones de especies, por lo cual permite la aplicación de métodos estadísticos diversos (Magurran, 1988).

El índice de Shannon – Wiener, se usa en ecología u otras ciencias similares para medir la biodiversidad. Este índice se representa normalmente como H' y se expresa con un número positivo, que en la mayoría de los ecosistemas naturales varía entre 1 y 5. Excepcionalmente puede haber ecosistemas con valores mayores (bosques tropicales, arrecifes de coral) o menores (algunas zonas desérticas). La mayor limitante de este índice es que no tiene en cuenta la distribución de las especies en el espacio. (Tabla 15).

$$H' = \sum_{i=1}^{s} (\mathbf{pi}) (\mathbf{log}_{2}\mathbf{pi})$$

Dónde: H'= Índice de Diversidad de Shannon-Wiener

S = Número de especies

pi = Proporción de la abundancia de la especie y del total de la muestra.

Tabla 15. Rangos del Índice de diversidad de Shannon-Wiener (H')

Índices	Tipo de Diversidad
0,0 – 1,5	Poca Diversidad
1,6 – 3,0	Mediana Diversidad
3,1 – 5,0	Alta Diversidad

Índice de Margalef (DMg)

Es una medida utilizada en ecología para estimar la biodiversidad de una comunidad con base a la distribución numérica de los individuos de las diferentes especies en función del número de individuos existentes en la muestra analizada, esenciales para medir el número de especies en una unidad de muestra. (Margalef 1955).

$$DMg = (S - 1) / ln N$$

S = Número de especies

N=Número Total de Individuos.

Tabla 16. Rangos del Índice de biodiversidad de Margalef (DMg)

Índices	Tipo de Biodiversidad
< 2	Baja biodiversidad (en general
	resultado de efectos antropogénicos)
2 a 5	Mediana biodiversidad
> 5	Alta biodiversidad

5.4.2. Fitoplancton Bentónico:

En cada estación de monitoreo se colectaron muestras de fitoplancton bentónico las que se obtuvieron utilizando un área de 10×10 cm. de sustrato duro de preferencia de color verde, para proceder al raspado de la superficie, y colocarlo en un frasco con Lugol, para su posterior envío al laboratorio.

Valor Indicador de las Microalgas Bentónicas

El uso de microalgas bentónicas para evaluar la calidad del agua es una práctica habitual en muchos países europeos, y existen abundante bibliografía sobre la capacidad bioindicadora. No obstante, la inmensa mayoría de los estudios realizados se refieren a diatomeas, y existen mucha menos información sobre los restantes grupos de algas.

Entre los índices más utilizados en el estudio de diatomeas como indicadores biológicos, que se han utilizado exitosamente en otros países están a) Índice biológico diatómico (IBD), b) Índice biológico general normalizado (IBGN), c) Índice General Diatómico (IDG), d) Índice Sapróbico (SI). El utilizado para este monitoreo es el Índice General Diatómico (IDG).

$$IDG = \frac{\sum_{j=1}^{j} A_{j} S_{j} V_{j}}{\sum_{j=1}^{n} A_{j} V_{j}}$$

Aj = Abundancia

Sj = Sensibilidad a la polución (1 a 5)

Vj = Valor indicativo de la especie (1 a 3).

Nota: Los valores del I.D.G. van de 1 a 5 en orden decreciente de los niveles de contaminación. Con esta fórmula el valor del índice que obtenemos sólo podrá variar entre 1 y 5, rango establecido para la clasificación de la calidad de las aguas.

Tabla 17. Rangos del Índice General Diatómico (IDG).

Valor	Significado
IDG>4,5	Calidad biológica óptima
4 <idg<4,5< td=""><td>Calidad normal. Polución débil</td></idg<4,5<>	Calidad normal. Polución débil
3,5 <idg<4< td=""><td>Polución moderada. Eutrofización</td></idg<4<>	Polución moderada. Eutrofización
3 <idg<3,5< td=""><td>Polución media. Eutrofización acentuada</td></idg<3,5<>	Polución media. Eutrofización acentuada
2 <idg<3< td=""><td>Desaparición de especies sensibles. Polución fuerte</td></idg<3<>	Desaparición de especies sensibles. Polución fuerte
1 <idg<2< td=""><td>Polución muy fuerte</td></idg<2<>	Polución muy fuerte
IDG=0	La población es considerada como inexistente. Polución tóxica

5.5. Técnicas Multivariadas de Análisis para la Relación entre Comunidades sobre la Población de camarón y Calidad de agua en base a Bio-indicadores.

5.5.1. Análisis de Frecuencias de Tamaños de Camarón de río a lo largo del río Cañete.

Los análisis se realizan en base a histogramas constituidos por frecuencias (o conteos) de individuos ordenados de acuerdo a una escala de tamaños con intervalos de 5 mm.

Por otro lado, se analiza la existencia de patrones de segregación del camarón a lo largo y ancho del río Cañete en relación a variables poblacionales como estado de madurez (juvenil y adulto) y sexo (hembras y macho). Para ello, se diseña una matriz de varias entradas en la cual se consideró las frecuencias de tamaños agrupadas por estaciones de muestreo, sexo, y ancho (margen izquierdo, cauce central, margen derecho).

El método utilizado para este análisis es el Análisis Log-linear de tablas de frecuencias, el cual permite el análisis de tablas de frecuencia de múltiples entradas mediante modelos de interacción de primer, segundo, tercer orden, etc., hasta encontrar el mejor modelo que ajuste a los datos observados y que incluya el menor número de interacciones necesarias para explicar la variabilidad observada de los mismos.

5.5.2. Análisis del efecto ambiental sobre la distribución de tamaños.

El método de análisis aplicado es el de Análisis Discriminante (AD) de tipo Forward, es decir se irán incorporando paso a paso solo aquellas variables que tengan un efecto significativo discriminatorio sobre los grupos analizados, bajo las consideraciones de un nivel de significación de entrada (F-to enter) igual 1 y de remoción (F to remove) igual a 0.

Las variables ambientales consideradas en el AD: Temperatura ambiental (°C), Temperatura del agua (°C), pH, Oxígeno disuelto (mg/L), Dureza (mg/L), Transparencia (NTU), Caudal (m^3/s), CO₂ y Nitritos.

5.5.3. Análisis de Calidad de Agua en base a Indicadores Biológicos.

Se utilizarán los métodos de Análisis de Componentes Principales (ACP) para analizar y caracterizar las estaciones de muestreo en relación a los parámetros fisicoquímicos. Luego se utilizará el método de Análisis de Correspondencia (AC) para el análisis de la abundancia de los indicadores biológicos (macroinvertebrados bentónicos y perifiton) y la relación con las estaciones de muestreo. Para finalizar, se empleará el Análisis de Correspondencia Canónica (ACC) para evaluar la relación entre los variables ambientales, la abundancia de los indicadores biológicos y las estaciones de muestreo. Las matrices son estandarizadas con la función log (x+1). Las variables ambientales consideradas en el presente análisis serán: temperatura ambiental (°C), temperatura del agua (°C), pH, oxigeno, dureza, transparencia, velocidad, nitritos, CO₂ y caudal.

5.5.4. Análisis del Efecto Ambiental sobre el Camarón de río.

El método emplea la exploración de las relaciones entre la abundancia relativa (ind/m²) del camarón de río, los parámetros fisicoquímicos (T° del agua, oxígeno disuelto, dureza, nitritos, pH, CO₂, transparencia, caudal y velocidad) y los indicadores biológicos (macroinvertebrados bentónicos y perifiton) para cada una de las estaciones evaluadas en el río Cañete, siendo denominado mediante el Análisis de Correspondencia Canónica (CCA).

Previo a los análisis se realizarán ajustes en la base de datos que se estandarizarán mediante la matriz con la función log(x+1).

5.6. Personal de Monitoreo

CELEPSA cuenta con el personal capacitado y experimentado en el manejo de la especie por más de 15 años, para realizar la recolección de muestras, así como el análisis interpretativo de los resultados con el medio ambiente, producto de las actividades que se realizan en la ejecución del Proyecto.

El presente Informe de monitoreo biológico de camarón de río, se ha logrado mediante un Coordinador del Monitoreo que tiene a su mando al personal capacitado para realizar la recolección de muestras y está integrado de acuerdo a un esquema de trabajo.

Figura 4. Personal colaborador en el monitoreo - Octubre 2020.

VI. RESULTADOS DE LA EVALUACIÓN DE LAS ESTACIONES DE MONITOREO BIOLÓGICO

El río Cañete es uno de los ríos más importantes de la costa central peruana, con una longitud total aproximada de 209 kilómetros. El río Cañete presenta un caudal anual considerable y es el hábitat de importantes recursos hidrobiológicos que son utilizados por los pobladores. Entre estos recursos destacan la *Oncorhynchus mykiss* "trucha", *Orestia sp.* "Chalguita", el *Basilichthys archaeus* "pejerrey" y el *Cryphiops caementarius* "camarón de río".

La primera y segunda especie se distribuye en la cuenca alta, mientras que las otras son más abundantes en la cuenca media - baja. La distribución de estas especies en zonas definidas de la cuenca, responde a diversos factores, entre los que se encuentran la geomorfología del terreno y las interacciones entre parámetros físicos, químicos y biológicos del agua.

Las comunidades de camarón del río (*Cryphiops caementarius*) Cañete tienen importancia biológica, porque su presencia suele ser indicador de la existencia de condiciones favorables, en términos bioecológicos, para su establecimiento, mientras las condiciones físicas y químicas de estos ambientes acuáticos estén dentro de los rangos habituales para ríos (aguas con buena oxigenación y pH relativamente neutro-básico) estas especies tendrán las condiciones adecuadas para continuar con sus ciclos biológicos. Por otro lado, su importancia económica y cultural hacen de él, el recurso de pesca económica en el sur chico.

6.1. Evaluación del Camarón de río (Cryphiops caemenatrius)

Cabe destacar que los resultados serán comparados principalmente con monitoreos anteriores efectuados en el mes de octubre por observar que la especie presenta determinadas características en periodos similares.

6.1.1. Tamaño de muestra

El muestreo aleatorio es una técnica para obtener muestras representativas de la población, que asegure una probabilidad de los elementos que pertenezcan a la población en dicho momento. Se trabajó a un nivel de significancia del 95% en las estaciones de muestreo, obteniéndose los siguientes resultados en dicho monitoreo. (Tabla 18).

Tabla 18. Tamaño de Muestra de las Estaciones de Monitoreo a un Nivel de Significancia del 95%

ESTACIONES	N	95%	ESTACIONES	N	95%
Pampilla	2267	71	San Juanito	5	5
Alto Hungara	1200	69	Huayllampi	29	21
Socsi	800	67	Chavin	31	22
Catapalla	174	52	Capillucas	18	15
Huagil	49	30			

Elaborado: Celepsa - Octubre 2020

6.1.2. Proporción de Sexos

Para el presente año los machos predominaron desde el estrato 100 hasta el 1 300 m.s.n.m., mientras que las hembras en los 0 a 100 y de 1 300 a los 1 700 m.s.n.m.; encontrándose finalmente en una proporción de 0,78:1, con predominio de las hembras, es decir los machos conforman el 43,89% de la población y las hembras el 56,11%, características típicas de la distribución sexual de la especie en el presente periodo cercano a la primavera (Tabla 19).

En todos los estratos hay un incremento en la distribución de los machos con respecto al mes de octubre 2020.

Tabla 19. Número de Machos y Hembras, Porcentaje (%) y Proporción Sexual por estrato altitudinal

-						
ESTRATO	PORCEN'	ГАЈЕ %	PROPORCIO	PROPORCION SEXUAL		
ESTRATO	MACHOS	HEMBRAS	MACHOS	HEMBRAS		
00-100	35.87	64.13	0.56	1		
100-300	50.14	49.86	1.01	1		
300-500	41.53	58.47	0.71	1		
500-700	65.61	34.39	1.91	1		
700-900	68.29	31.71	2.15	1		
900-1100	66.67	33.33	2.00	1		
1100-1300	61.11	38.89	1.57	1		
1300-1500	8.93	91.07	0.10	1		
1500-1700	36.36	63.64	0.57	1		
TOTAL	43.89	56.11	0.78	1		

En la distribución de machos y hembras para octubre 2020, comparándolo con octubre 2019 podemos observar lo siguiente:

- 00 100 m.s.n.m., en machos existe una disminución de 27,71% y en hembras una disminución del 22,43%.
- 100 300 m.s.n.m., en machos existe una disminución del 36,52% y en hembras una disminución del 40,99%.
- 300 500 m.s.n.m., en machos existe una disminución del 23,28% y en hembras una disminución del 17,56%.
- 500 700 m.s.n.m., en machos existe una disminución de 9,86% y en hembras una disminución de 4,04%.
- 700-900 m.s.n.m., en machos existe una disminución de 1,82% y en hembras una disminución de 0,74%.
- 900- 1 100 m.s.n.m., en machos existe una disminución de 1,38% y en hembras una disminución de 4,55%.
- 1 100 1 300 m.s.n.m., en machos existe un incremento de 0,29% y en hembras hubo disminución 3,99%.
- 1 300 1 500 m.s.n.m., en machos existe una disminución de 0,42% y en hembras una disminución de 4,50%.
- 1 500 1 700 m.s.n.m., en machos existe un incremento de 0,71% y en hembras hubo disminución de 1,20%.

La nueva distribución por estratos de los machos y hembras en el río Cañete, se observa que la población de hembras es mayor a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico, debido a que dicho sector ha mejorado su habitabilidad para el crecimiento de las hembras, razón por la que ellas son las que sobreviven y se desarrollan óptimamente en dichos sectores (Tabla 20).

Tabla 20. Porcentaje de machos y hembras desde octubre 2007 a octubre 2020

	2025	
Mes - Año	PORCE	NTAJE %
Wies - Allo	MACHOS	HEMBRAS
Oct-07	56,32	43,68
Oct-08	50,89	49.11
Oct-09	42,58	57,42
Oct-10	49,23	50,77
Oct-11	50,60	49,40
Oct-12	45,62	54,38
Oct-13	47,30	52,70
Oct-14	46,37	53,63
Oct-15	45,03	54,97
Oct-16	47,68	52,32
Oct-17	48,76	51,24
Oct-18	47,65	52,35
Oct-19	45,87	54,13
Oct-20	43.89	56.11
F1-11 C-1	O-11 2020	

6.1.2. Madurez Gonadal

La determinación de la proporción de sexos y la serie de cambios en la fase de madurez que ocurren durante el año son de enorme importancia para adquirir un conocimiento completo de la biología de una población explotada. En el caso de algunas especies puede ser necesario mantener de forma rutinaria programas para analizar la proporción de sexos y las fases de madurez de los individuos.

Para octubre 2020, se observa lo siguiente:

Machos

- El **21,03**% se encuentran en estadio I (Inmaduro)
- El 60,45% se encuentran en estadio II (Inactivos o reposo)
- El **18,25**% se encuentra en estadio III (Intermedio)
- El **0,27**% se encuentra en estadio IV (Avanzado)

Hembras

- El **25,72**% se encuentra en estadio I (Inmaduro)
- El 59,53% se encuentran en estadio II (Inactivos o reposo))
- El 11,47% se encuentra en estadio III (Intermedio)
- El 3,29% se encuentra en estadio IV (Avanzado)

Indicándonos, para los machos, que el mayor porcentaje de la población se encuentra en **estadio Inactivo o de Reposo** y para las hembras, el mayor porcentaje de la población se encuentra en **estadio Inactivo o de Reposo.** Por lo tanto, para esta etapa de evaluación los machos y hembras representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan. Estos serán los primeros productores reclutas de primavera. (Tabla 21).

Tabla 21. Madurez gonadal de machos y hembras por estratos altitudinales – octubre 2020

			MAC	HOS		HEMBRAS							
ESTRATO		EST	ΓADIO C	ONAD	AL		ESTADIO GONADAL						
	0	I	II	III	IV	\mathbf{V}	0	I	II	III	IV	\mathbf{V}	
00-100	0	33401	58403	10904	75	0	1425	64201	93378	20024	4716	0	
100-300	0	33561	93770	20569	230	0	962	57847	69995	15336	3186	0	
300-500	0	5226	92358	38127	762	0	1134	8676	152726	20840	8753	0	
500-700	0	17764	13179	4578	62	0	126	8510	7702	1854	462	0	
700-900	0	1387	2816	1907	31	0	43	139	2080	426	163	0	
900-1100	0	60	495	164	5	0	0	0	114	214	33	0	
1100-1300	0	0	923	589	10	0	0	0	537	380	51	0	
1300-1500	0	159	150	97	0	0	0	81	1708	2069	282	0	
1500-1700	0	0	1139	2526	0	0	0	0	3088	2677	649	0	
TOTAL	0	91558	263234	79461	1176	0	3691	139454	331330	63821	18295	0	
TOTAL %	0.00	21.03	60.45	18.25	0.27	0.00	0.66	25.06	59.53	11.47	3.29	0.00	

Elaborado: Celepsa - Octubre 2020

Al comparar los estadios gonadales de machos y hembras con octubre 2019 (Tabla 22 y Figura 5):

Tabla 22. Porcentaje del estadio gonadal de machos y hembras durante los monitoreos de octubre del 2007 a octubre 2020

			% MA	CHOS			% HEMBRAS					
Mes - Año		ES	ΓADIO	GONAD	ESTADIO GONADAL							
	0	I	II	III	IV	V	0	I	II	III	IV	V
Oct-07	0,00	15,42	11,94	61,18	11,46	0,00	0,00	7,85	1,02	38,21	9,64	43,28
Oct-08	0,00	18,46	47,40	32,27	1,86	0,00	0,00	11,90	70,55	15,96	1,60	0,00
Oct-09	2,51	8,32	70,49	16,50	2,19	0,00	0,75	7,75	65,98	13,49	12,02	0,00
Oct-10	0,00	33,39	57,76	8,63	0,22	0,00	0,04	53,49	32,61	1,50	10,06	2,29
Oct-11	0,00	48,16	39,78	9,95	2,11	0,00	0,00	62,67	24,91	1,47	10,94	0,00
Oct-12	0,00	33,31	62,52	4,17	0,00	0,00	0,00	27,41	53,04	7,93	11,63	0,00
Oct-13	0,00	30,64	59,42	9,43	0,51	0,00	0,00	36,20	49,25	5,25	9,30	0,00
Oct-14	0,00	61,11	36,51	2,38	0,00	0,00	0,00	71,63	19,89	5,46	2,96	0,06
Oct-15	5,32	50,18	38,68	5,00	0,82	0,00	5,72	58,07	18,21	7,51	10,48	0,00
Oct-16	0,00	46,95	51,02	1,93	0,10	0,00	0,00	49,79	45,04	2,97	2,20	0,00
Oct-17	0,00	36,52	61,35	2,08	0,05	0,00	0,00	45,94	49,03	0,84	4,19	0,00
Oct-18	0,00	43,73	53,22	3,05	0,00	0,00	0,00	56,51	38,68	4,80	0,00	0,00
Oct-19	0,00	40,28	56,25	2,93	0,53	0,00	0,00	39,01	46,84	7,28	6,86	0,00
Oct-20	0,00	21,03	60,45	18,25	0,27	0,00	0,66	25,06	59,53	11,47	3,29	0,00

Se observa lo siguiente:

- Estadio I: Disminución de machos en un 19,25% y en hembras una disminución 13,29%.
- Estadio II: Incremento de machos en un 4,20% y en hembras un incremento de 12,69%.
- Estadio III: Incremento de machos en un 15,32% y en hembras un incremento de 4,19%.
- Estadio IV: Disminución de machos en un 0,26% y en hembras una disminución de 3,58%.

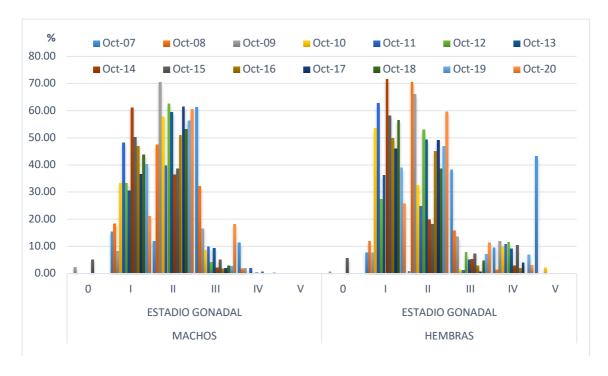


Figura 5. Porcentaje del Estadio Gonadal de Machos y Hembras durante los monitoreos anuales

6.1.3. Composición de Tallas

En la Figura 6 y la Tabla 23, se ha determinado el número de individuos por intervalo de longitud según estrato, donde el estrato 300-500 m.s.n.m. se encuentra con la mayor cantidad de la población entre las longitudes de 30 a 129 cm.

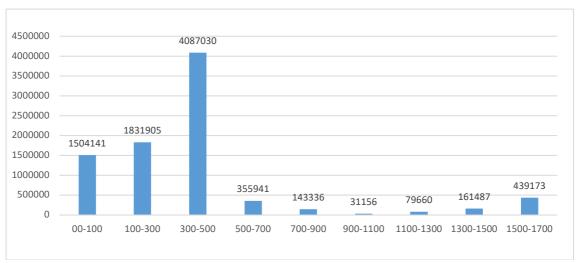


Figura 6. Distribución Poblacional por estratos – octubre 2020

Tabla 23. Número de Individuos por Intervalo de Longitud según Estratos

LONGITUD	00-100	100-300	300-500	500-700	700-900	900-1100	1100-1300	1300-1500	1500-1700	TOTAL
20-29	-	-	-	-	-	-	-	-	-	-
30-39	3379.20	1932.14	-	11054.49	701.90	-	-	129.87	-	17197.60
40-49	101893.69	94880.92	7882.09	21428.24	907.05	-	-	167.83	-	227159.82
50-59	446899.39	447566.72	87177.41	28603.50	1729.67	570.44	-	-	-	1012547.14
60-69	550064.01	528381.12	438442.99	56142.61	10968.41	904.33	1730.52	-	-	1586634.00
70-79	207828.30	253505.97	1252916.10	57789.43	19425.69	711.83	3405.40	-	-	1795582.72
80-89	124778.84	194578.25	958219.37	66795.24	7068.53	2331.16	7806.58	2615.76	7382.06	1371575.79
90-99	48681.62	148452.85	597509.46	39813.45	20223.41	3334.78	9572.15	22451.45	31680.65	921719.83
100-109	20615.48	94299.23	290241.02	30348.04	38538.53	4236.59	8107.15	40407.48	107327.85	634121.37
110-119	-	68307.33	323448.10	43966.29	18610.72	3068.85	-	27548.12	77744.84	562694.24
120-129	-	-	131193.62	0.00	25162.28	8298.37	23819.64	55868.89	52556.75	296899.55
130-139	-	-	-	-	-	-	10485.76	12297.16	104113.21	126896.14
140-149	-	-	-	-	-	7699.17	14733.13	-	-	22432.30
150-159	-	-	-	-	-	-	-	-	-	-
160-169	-	-	-	-	-	-	-	-	58367.54	58367.54
Total por estrato	1504141	1831905	4087030	355941	143336	31156	79660	161487	439173	8633828

6.1.4. Abundancia y Biomasa

Se evaluó que el 35,38% de la abundancia y el 67,07% de biomasa estaría disponible de ser capturada en los próximos meses, considerando la finalización de época de veda.

Comparando octubre 2019 a octubre 2020, la biomasa capturable (mayor a 7 cm), se incrementó en un 7,19% y la Abundancia capturable aumento en un 8,34%.

Entre la biomasa comercial destacan las tallas 74,5 a 114,5 mm, representando el 61,22% (Tabla 24).

Tabla 24. Frecuencia de Biomasa y Abundancia por Intervalo de Longitud

INTERVALO	MEDIAC		BIO	MASA		ABUNDANCIA				
INTERVALO	MEDIAS	Kg	%	Kg	%	N°Ind.	%	Nº Ind.	%	
20-29	24.5	-	-			-	-			
30-39	34.5	17.20	0.20			21497.01	2.17			
40-49	44.5	227.16	2.63	2843.54	32.93	109863.92	11.07	641998.37	64.72	
50-59	54.5	1012.55	11.73			256805.43	25.89			
60-69	64.5	1586.63	18.38			253832.01	25.59			
70-79	74.5	1795.58	20.80			182471.41	18.39			
80-89	84.5	1371.58	15.89			85122.51	8.58			
90-99	94.5	921.72	10.68			39987.85	4.03			
100-109	104.5	634.12	7.34	5731.92	67.07	21654.69	2.18	350020.42	35.28	
110-119	114.5	562.69	6.52			13263.64	1.34			
120-129	124.5	296.90	3.44			5176.22	0.52			
130-139	134.5	126.90	1.47			1675.20	0.17			
140-149	144.5	22.43	0.26			210.76	0.02			
150-159	154.5	-	-			-	-			
160-169	164.5	58.37	0.68			458.14	0.05			

Figura 7. Biomasa y Abundancia tallas - octubre 2020

La abundancia absoluta estimada para toda el área evaluada es de **992 019 individuos**, con una biomasa absoluta estimada de **8 634 Kg**, comparándolo con los resultados obtenidos en octubre 2019, hay una disminución en la biomasa de 6 605 kg. y en la abundancia de 1 105 357 individuos (Figuras 8 y 9).

En el presente monitoreo se obtuvo una **abundancia relativa de 0,34 ind/m²** y una **biomasa relativa de 2,95 g/m²** (Tabla 41). En relación a octubre 2019 (0,80 ind/m² y 5,81 g/m²), observamos una disminución de 0,46 ind/m² con respecto a la abundancia relativa y de 2,86 g/m² con respecto a la biomasa relativa.

Abundancia Relativa

- La mayor abundancia relativa se presentó en el estrato 0 100 m.s.n.m. (Pampilla) con 1,63 ind/m².
- Y como segundo más abundante el estrato de 100 300 m.s.n.m. (A. Húngara) con 0,96 ind/m².

Biomasa Relativa

- La mayor biomasa relativa se presentó en el estrato 00 100 m.s.n.m. (Pampilla) con 8,57 g/m².
- Y seguido como segundo más abundante el estrato de 300 500 m.s.n.m. (Socsi) con 6,56 g/m² (Tabla 25).

Los resultados totales del presente monitoreo octubre 2020 no podrían ser comparables con el de octubre 2019 debido a que no se desarrollo con el mismo numero de puntos de muestreo de los años anteriores(solo se monitoreo un 50% de los mismos) por lo que siendo el área de monitoreo total muy extensa este monitoreo solo nos podrá brindar características de frecuencias de tallas y peso, distribución de sexos y condición del mismo, mas no una estimación de abundancia y biomasa comparable cercana a lo existente en el rio ni comparable con los otros años respecto a dichos valores.

Por otro lado si se observa un descenso de la población en los sectores muestreados con respecto a los mismos sectores en otros años debido basicamentes a tres actividades presentadas en el 2020:

La primera y más impactante, los trabajos de mejoramiento de 29 bocatomas agrícolas a lo largo de los sectores comprendidos entre San Juanito y Lunahuana, que originaron desvíos del cauce principal del rio de manera continua, turbidez casi permanente a partir del mes de mayo y cambios drásticos en el vaso del lecho del rio, interrumpiendo la migración del camarón, afectando la cadena alimentaria y su fauna acompañante.

La segunda, no realización del repoblamiento en el sector de caudal ecológico por la imposibilidad de obtener la población juvenil adecuada debido a las restricciones de salud por la pandemia presentada desde marzo del 2020.

La tercera que solo podemos mencionar y tenerla en cuenta, la paralización de las actividades comerciales por la Pandemia por el COVID 19 que origino que la población no camaronera del valle se volqué a la extracción del camarón como medio de subsistencia temporal.

Tabla 25. Abundancia y Biomasa por estrato altitudinal

Sectores Evaluados	A 1414 1	Estaciones	Á	ABUNI	DANCIA	BIOMASA	
	Altitud (m.s.n.m.)	de	Área	Relativa	Absoluta	Relativa	Absoluta
	(111.5.11.111.)	Monitoreo	m2	(ind/m2)	(N)	(g/m2)	(kg)
PAMPILLA	00 -100	PAMPILLA	175500.00	1.63	286,528	8.57	1,504.14
ALTO HUNGARA	100-300	A.HUNGARA	308,750.00	0.96	295,457	5.93	1,831.90
SOCSI	300-500	SOCSI	623,437.50	0.53	328,604	6.56	4,087.03
CATAPALLA	500-700	CATAPALLA	443,750.00	0.12	54,236	0.80	355.94
HUAGIL	700-900	HUAGIL	259,000.00	0.03	8,993	0.55	143.34
SAN JUANITO	900-1100	SAN JUANITO	312,500.00	0.00	1,085	0.10	31.16
HUAYLLAMPI	1100-1300	HUALLAMPI	74,750.00	0.03	2,492	1.07	79.66
CHAVIN		CHAVIN	123,500.00	0.04	4,545	1.31	161.49
CAPILLUCAS	1500-1700	CAPILLUCAS	604,750.00	0.02	10,079	0.73	439.17
T	OTAL		2,925,938	0.34	992,019	2.95	8,634

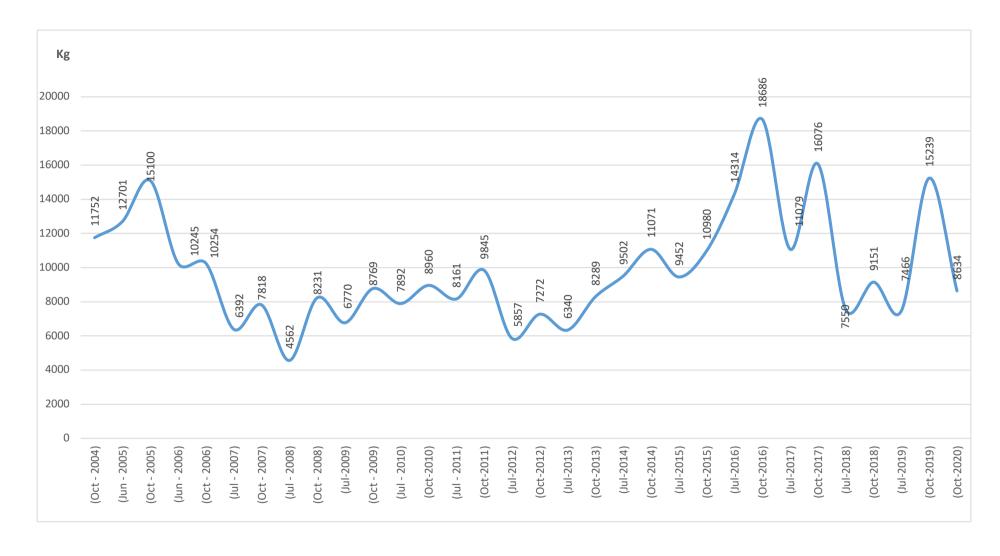


Figura 8. Resultados de la Biomasa Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a octubre 2020

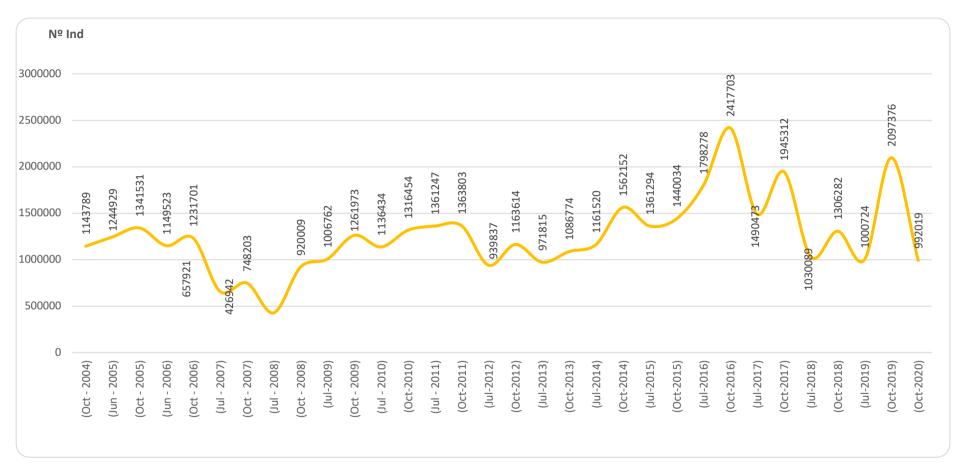


Figura 9. Resultados de la Abundancia Absoluta obtenida durante los monitoreos efectuados desde octubre 2004 a octubre 2020.

VII. RESULTADOS DE LOS ANÁLISIS FÍSICO – QUÍMICOS DEL AGUA EN LAS ESTACIONES DE MONITOREO.

Los parámetros físico-químicos evaluados en las estaciones de monitoreo fueron los siguientes: temperatura, pH, oxígeno disuelto, dureza, CO₂, Nitritos Y Turbidez. Los resultados registrados en cada estación de monitoreo se presentan en el Tabla 26.

Tabla 26. Valores de los parámetros físico químicos octubre 2020

Altitud (m.s.n.m.)	ESTACION	T.AMB. ^o C	T.AGUA ºC	Nitrito	pН	OXIGENO (mg/L)	CO2 (mg/L)	DUREZA (mg/L)	TURBIDEZ (NTU)
00 -100	PAMPILLA	23.0	26.2	0.0	8.00	6.0	15	273.00	0.64
100-300	ALTO HUNGARA	23.7	22.9	0.0	8.00	6.0	20	205.20	1.34
300-500	SOCSI	31.6	24.0	0.0	8.50	6.0	15	222.30	1.00
500-700	CATAPALLA	22.4	19.8	0.0	8.00	6.0	25	222.30	3.41
700-900	HUAGIL	31.5	22.7	0.0	8.00	6.0	25	222.30	1.14
900-1100	SAN JUANITO	24.9	21.9	0.0	8.00	6.0	25	188.10	0.95
1100-1300	HUAYLLAMPI	28.7	23.5	0.0	8.00	6.4	25	205.20	0.78
1300-1500	CHAVIN	31.0	22.2	0.0	8.00	6.4	50	222.30	0.68
1500-1700	CAPILLUCAS	29.7	19.1	8.0	8.00	6.0	30	222.30	0.63

Elaborado: Celepsa - Octubre 2020

7.1. Temperatura (°C):

La Temperatura es un factor abiótico que regula procesos vitales para los organismos vivos, así como también afecta las propiedades químicas y físicas de otros factores abióticos en un ecosistema.

La temperatura rige algunos parámetros físicos, químicos y biológicos, tales como la evaporación y la solubilidad de los gases. Dentro de los biológicos están los procesos metabólicos como la respiración, nutrición, actividad de las bacterias en la descomposición de la materia orgánica, etc. de ahí la necesidad de conocer y evaluar los cambios de temperatura del agua. Welch (1952).

Es uno de los parámetros físicos más importantes en el agua, pues por lo general influye en el retardo o aceleración de la actividad biológica, la absorción de oxígeno, la precipitación de compuestos, la formación de depósitos, la desinfección y los procesos de mezcla, floculación, sedimentación y filtración. Múltiples factores, principalmente ambientales, pueden hacer que la temperatura del agua varíe continuamente.

En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo osciló entre un máximo en **26,2** °C y como mínimo **19,1** °C. (Figura 10).

Figura 10. Temperatura (C°) del agua y ambiente, por estratos en el monitoreo octubre 2020

7.2. pH (UpH):

Este valor, expresa la concentración de iones hidrógeno en el agua y es la expresión de las características ácidas o básicas que esta presenta. Su escala varía entre 0 y 14, siendo el punto 7, el denominado "neutro". Por debajo de 7, los valores serán ácidos y por encima de dicho valor, básicos. En su gran mayoría, el pH de las aguas se equilibra por medio de un sistema de carbonato-bicarbonato y abarca valores que van desde 5,0 hasta 9,0; existiendo algunas excepciones. Para la mayor parte de los animales acuáticos, el valor óptimo de pH en referencia a su crecimiento y salud, se sitúa en el rango de 6,5 a 9,0. La exposición a un pH extremo puede ser estresante o letal. El pH controla una gran variedad de reacciones de equilibrio (por ejemplo, las reacciones de amoníaco y nitritos e influye también en la toxicidad de metales como el cobre, cadmio, zinc y aluminio).

Respecto al parámetro pH las concentraciones registradas oscilaron como máximo en **8,50 UpH** y como mínimo en **8,00 UpH** (Figura 11). De las estaciones en el presente monitoreo, se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6.5 a 8.5).

El pH de un cuerpo de agua puede variar a lo largo de un amplio rango de valores, dependiendo de factores del ambiente acuático:

Intrínsecos (Estratificación y mezcla del sistema acuático; Evaporación; La intensidad de procesos biológicos tales como fotosíntesis, respiración y actividades de descomposición de materia orgánica).

Extrínsecos (Composición de: suelos adyacentes, depósitos superficiales y lecho rocoso; Fuentes de contaminación: drenaje ácido de minas, precipitación ácida; Presión parcial de CO₂ en la atmósfera y la temperatura).

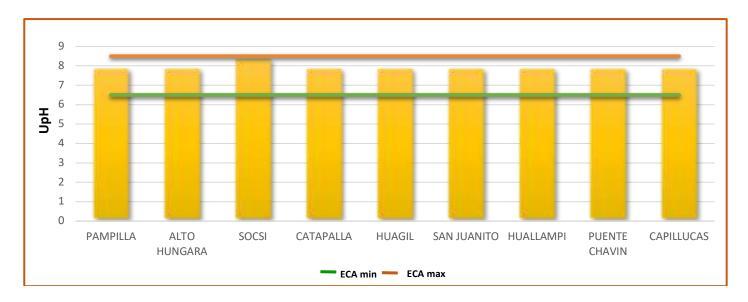


Figura 11. Registro del pH del agua, por estratos en el monitoreo octubre 2020

7.3. Oxígeno (mg/L):

Es la variable química considerada crítica en el cultivo de peces y por lo tanto la más importante y sus concentraciones requieren de un monitoreo continuo en acuicultura en varios tipos de sistemas. El oxígeno disuelto (OD) en el agua se encuentra relacionado íntimamente a la temperatura (según la ley de gases) de tal forma que, a mayor temperatura, este gas será menor y a menor temperatura, su concentración será mayor. La presión barométrica y la altura también influyen directamente sobre su concentración.

El nivel de oxígeno disuelto presente en un sistema de acuicultura es el parámetro más importante en la calidad del agua. Si no existe una adecuada concentración de oxígeno disuelto los organismos pueden ser vulnerables a enfermedades y parásitos, o morir por hipoxia (Salazar, 2001).

Respecto al Oxígeno Disuelto promedio (Figura 12), las concentraciones registradas en la presente evaluación oscilaron en un máximo de 9,0 mg/L y la mínima en 8,00 mg/L, encontrándose a los valores del presente monitoreo normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥5).

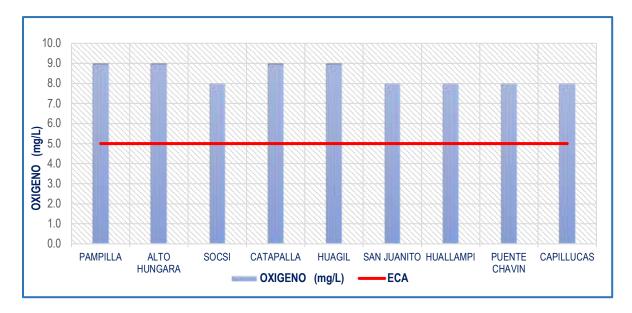


Figura 12. Registro del oxígeno en el agua, por estratos en el monitoreo octubre 2020

7.4. Dureza (mg/L):

La dureza total o general se define como la concentración de iones, básicamente calcio y magnesio y se expresa como mg/L de carbonato de calcio equivalente (Rodríguez & Anzola, 2001).

Respecto a la dureza promedio, las concentraciones registradas en la presente evaluación oscilaron en un máximo de 273,0 mg/L y la mínima en 188,10 mg/L, encontrándose a los valores del presente monitoreo en una clasificación de agua Dura (Figura 13). Los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio mientras que en aguas muy blandas suelen aparecer deficiencias en minerales y se advierte un crecimiento pobre.

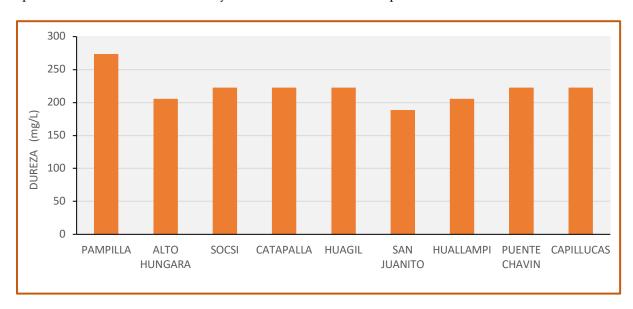
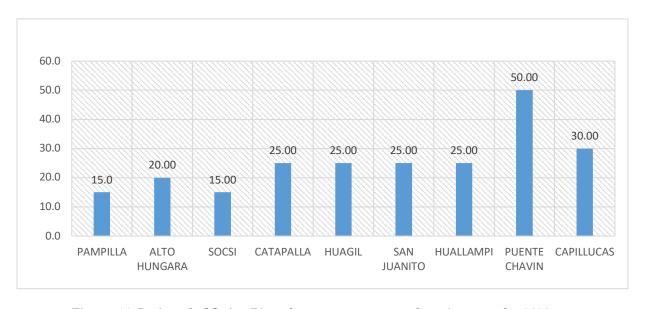


Figura 13. Registro de dureza (mg/L) en el agua, por estratos en el monitoreo octubre 2020


7.5. CO_2 (mg/L):

El anhídrido carbónico es un gas muy soluble en agua, aunque su concentración pura sea baja. La mayor parte de su producción en un sistema acuícola, proviene de la respiración de los propios animales en cultivo y de la descomposición de la materia orgánica que existe en el sistema. Su medida se efectúa químicamente en laboratorio.

La acumulación de CO₂ en el agua indica muchas veces, una cesación del proceso fotosintético en el agua, en estas circunstancias, no habrá producción de oxígeno por el fitoplancton por ende no habrá oxígeno para los organismos en el agua.

Una alta concentración de CO₂ son comunes cuando existe una floración exagerada de algas en el medio acuático, si ocurre una mortalidad de estas algas/plantas es provocado por su alta concentración en el agua y por una deficiencia de oxígeno por fotosíntesis y liberación de este CO₂ por el proceso de descomposición de las algas/plantas muertas.

El CO₂ promedio (Figura 14), osciló en la presente evaluación con un máximo de **50 mg/L** y la mínima con 1**5 mg/L**.

Figura 14. Registro de CO₂ (mg/L) en el agua, por estratos en el monitoreo octubre 2020

7.6. Turbidez (NTU):

Al propagarse en un medio acuoso, la luz se extingue por fenómenos de absorción y dispersión. Ya el agua pura interacciona con la luz y contribuye a su extinción, pero si consideramos además las sustancias que se encuentren disueltas y las partículas en suspensión, podemos imaginarnos que los sistemas acuáticos presentaran una zona iluminada en su superficie, tornándose cada vez más oscura en función del aumento de la profundidad, el color y turbidez del agua. Aguas con aspecto barroso (achocolatado) obtiene esa coloración por la suspensión de sedimentos por acción del viento, corriente, o por aportes externos. Entre los últimos, la erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la

penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas.

Para el presente monitoreo la Turbidez osciló entre 3,41 NTU como máximo y 0,43 NTU como mínimo. (Figura 15).

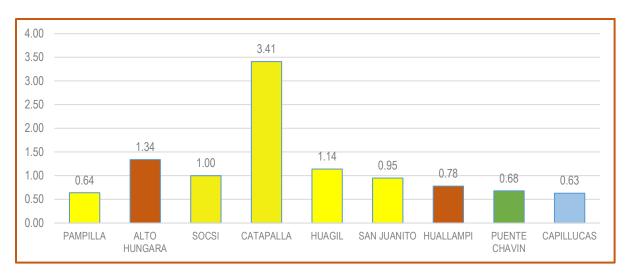


Figura 15. Registro de Turbidez (NTU) en el agua, por estratos en el monitoreo octubre 2020

VIII. RESULTADOS DE LA EVALUACIÓN DEL PLANCTON

El plancton es muy importante ya que constituye la unidad básica de producción de materia orgánica en los ecosistemas acuáticos. Así, los componentes vegetales del plancton son capaces de acumular energía lumínica solar en forma de componentes químicos energéticos a merced de la fotosíntesis, además el oxígeno producido representa una parte sustancial para los organismos acuáticos. Por lo que las zonas de mayor riqueza pesquera en el mundo son las zonas donde el plancton es abundante.

8.1. Muestreo Biológico

Las muestras biológicas obtenidos fueron empleando redes de nylon, para fitoplancton y zooplancton.

8.2. Fitoplancton

Las especies predominantes de fitoplancton en todos los puntos de muestreo pertenecen a la División Bacillariophyta (comúnmente llamadas diatomeas), presentando 328 cel/L (78,00%), el segundo grupo dominante fueron las Chlorophytas, con 69 cel/L (16,6 %) y el tercer grupo fueron las Cyanobacterias con 19 cel/L (4,60%) como se puede observar en la Figura 16.

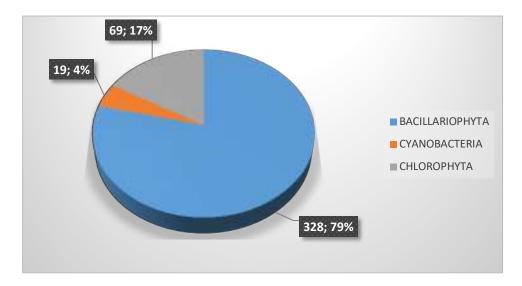
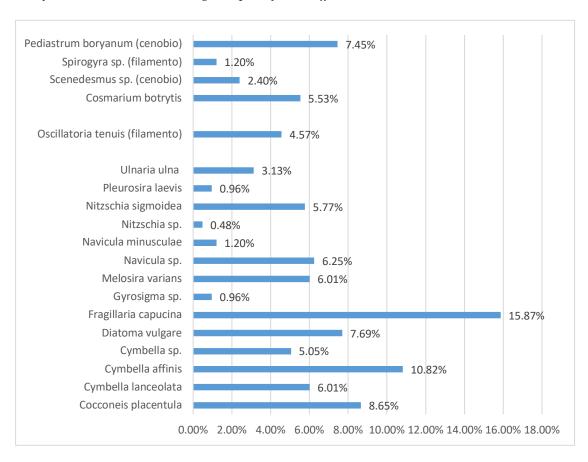



Figura 16. Porcentaje de divisiones de fitoplancton identificado – octubre 2020

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 17), el phyllum con mayor presencia es Bacillariophytas, siendo *Fragillaria capucina* (15,87%) especie con mayor abundancia relativa, seguida por *Cymbella affinis* (10,82%).

Figura 17. Abundancia relativa (%) de las especies de fitoplancton en las estaciones muestreadas - octubre 2020

8.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 17 especies de algas pertenecientes a tres divisiones: Bacillariophyta, Cyanobacterias y Chlorophyta. La abundancia total registrada en las 9 estaciones de muestreo fue de 416 células/L, teniendo mayor importancia en riqueza de especies las diatomeas (Figura 18).

Según la composición taxonómica encontrada, la mayor presencia de la división Bacillariophytas es considerada normal dentro de los ecosistemas acuáticos (Acleto y Zuñiga, 1998). Las algas de la división Chlorophyta son también importantes en riqueza y abundancia, lo cual refleja una buena productividad primaria, ya que estas algas en general están adaptadas a diversos ambientes y a diversas condiciones ambientales, se las encuentra en casi todos los cuerpos de aguas continentales.

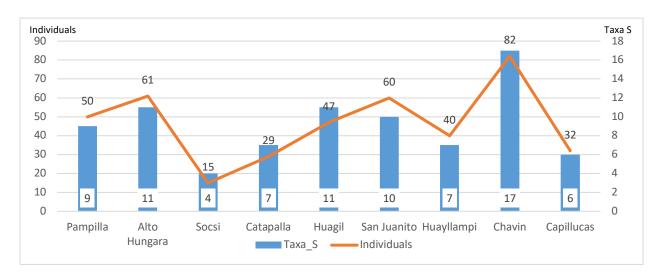


Figura 18. Abundancia y riqueza del fitoplancton en las estaciones muestreadas - octubre 2020

División Bacillariophyta

La división incluye a las diatomeas, que son organismos unicelulares aislados en colonias, tienen una pared celular de sílice, producen su propio alimento gracias a la presencia de clofilas a, c y carotenoides o son heterotróficos por carecer de los pigmentos fotosintéticos (Lee 1999; Raven et al. 1999). Se calcula que existen aproximadamente 100 000 *spp.* (Raven et al. 1999). Las diatomeas son uno de los componentes del plancton y constituyen uno de los principales elementos de la flora marina de aguas abiertas y es un componente importante de la flora de ambiente de agua dulce (Lee 1999). Este grupo es el responsable del 25% de la producción primaria del mar y 75% de agua dulce. (Gallardo 1998).

Esta división para el presente monitoreo presentó **14 especies de diatomeas** (Bacillariophytas), siendo las más representativas *Fragillaria capucina* con 66 cel/L y *Cymbella affinis* con 45 cel/L (Figura 19 y 20).

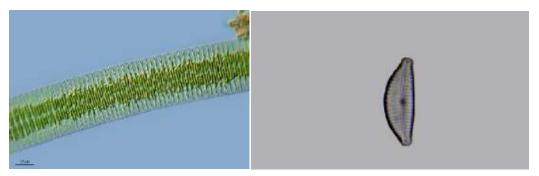


Figura 19. Fragillaria capucina

Figura 20. Cymbella affinis

División Chlorophytas

Esta división está constituida por algas verdes y es considerada como la más cercanamente relacionada con el reino Plantae. Las algas verdes son uni o pluricelulares, son autótrofas y sus pigmentos fotosintéticos son las clorofilasas a, b y los carotenoides. La pared celular está primordialmente constituida por celulosa (Lee 1999; Raven et al. 1999). El 90% de las especies son de agua dulce y el 10% restante consta de especies marinas (Smith 1955 en Lee 1999) y muchas de ellas forman simbiosis con hongos dando origen a los líquenes. Se calcula que existen aproximadamente 17 000 spp. (Raven et al. 1999).

En esta división se presentaron **04 especies**, siendo las más representativas *Pediastrum boryanum* (*cenobio*) con 31 cel/L y *Cosmarium botrytis* con 23 cel/L (Figura 21 y 22).

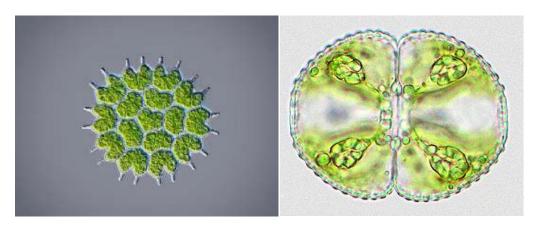


Figura 21. Pediastrum boryanum (cenobio)

Figura 22. Cosmarium botrytis

División Cyanophytas

Las cianofíceas, también llamadas cianófitas o cianobacterias, son un filo de móneras microorganismos procarióticos, puesto que carecen de membrana nuclear. También se llaman cianofíceas o algas verde-azuladas, debido a que poseen sustancias fotosintéticas del tipo de la clorofila y ficocianina, un pigmento de color azulado. Como pueden realizar la fotosíntesis, desprenden oxígeno.

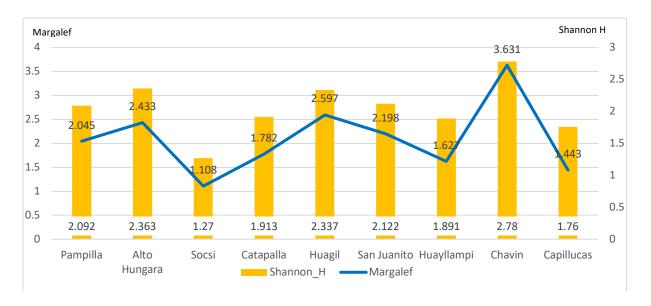
Son mayormente acuáticas con un amplio rango de salinidad y temperatura, pero mayormente en agua dulce. Algunas pueden formar, en épocas del año con temperatura favorable, una capa superficial de diversos colores conocida como flores de agua; como ejemplo está *Microcystis aeruginosa* que libera al medio sustancias tóxicas que pueden causar la muerte de los peces.

Algunas viven en aguas termales (hasta 80°C), en desiertos y lugares helados. Intervienen como formadoras del plancton. Contribuyen a la formación de arrecifes coralinos segregando carbonatos de Ca y Mg. Pueden ser utilizadas como indicadores biológicos de la contaminación porque muchas especies restringen su hábitat a aguas polucionadas.

La división presentó **01 especies**, la más predominante fue *Oscillatoria tenuis (filamento)* con 19 cel/L, (Figura 23).

Figura 23. Oscillatoria tenuis (filamento).

8.2.2. Índices de Diversidad e Indicadores Biológicos


De la comunidad planctónica se analizaron exclusivamente los datos del fitoplancton por ser esta la comunidad mejor representada al presentar especies que se utilizan como indicadores biológicos.

Índice de Diversidad Específica Shannon - Wiener (H')

El presente índice Shannon – Wiener osciló de 1,27 a 2,78, encontrándose en el Rango de mediana diversidad (Figura 24). La más baja se presentó en la estación de Socsi, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 1,636 a 2,818; encontrándose en el Rango de baja a mediana biodiversidad (Figura 24). Encontrándose con valores de baja biodiversidad en la estación de Socsi, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

Figura 24. Índices de diversidad aplicados al fitoplancton – octubre 2020

8.3. Zooplancton

Las especies predominantes de zooplancton en los puntos de muestreo pertenecen a la División Rotifera con 1 230 Org/m³ (71,9%), Amoebozoa con 432 Org/m³ (25,3%) y Arthropoda con 48 Org/m³ (2,8%) como se puede observar en la Figura 25.

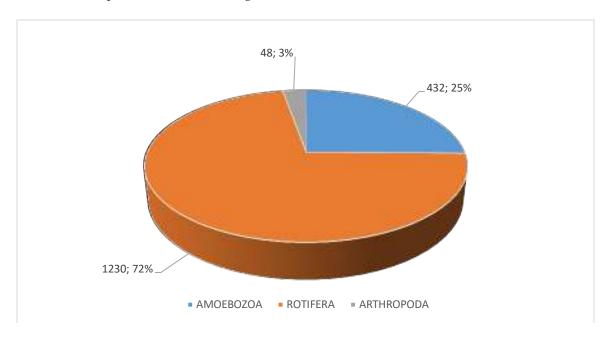
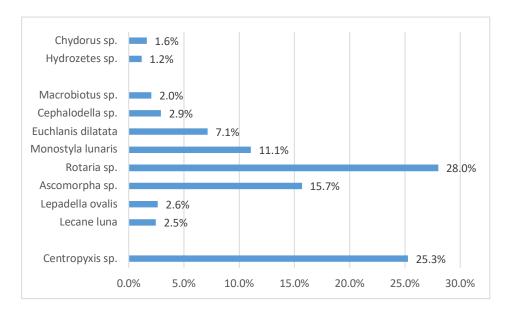



Figura 25. Porcentaje de divisiones de zooplancton identificado – octubre 2020

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 26), el phyllum con mayor presencia es Rotífera, siendo *Rotaria sp.* especie con mayor abundancia relativa registrada 479 Org/m³ (28,0%).

Figura **26.** *Abundancia relativa* (%) *de las especies de zooplancton en las estaciones muestreadas - octubre* 2020.

8.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron **11 especies de organismos** pertenecientes a tres divisiones: **Amoebozoa, Rotífera y Arthropoda**. La abundancia total registrada en las 18 estaciones de muestreo fue de 8765 organismo/m³, teniendo mayor importancia en riqueza de especies los Rotíferos (Figura 27).

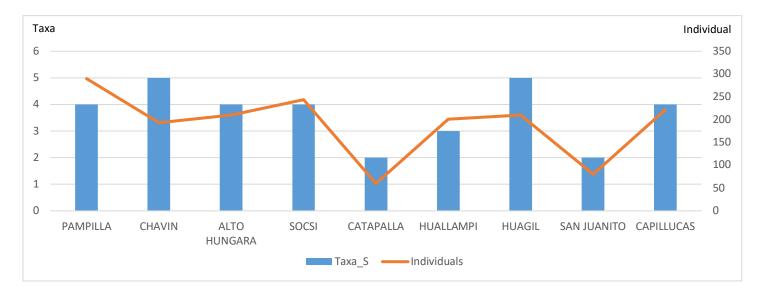


Figura 27. Abundancia y riqueza del zooplancton en las estaciones muestreadas - octubre 2019

Phylum Amoebozoa

Amoebozoa es un grupo amplio y diverso, pero ciertos caracteres son comunes a todos sus miembros. La célula se divide típicamente en una masa central granular denominada <u>endoplasma</u> y una capa externa más clara llamada <u>ectoplasma</u>. Durante la locomoción se producen flujos de endoplasma primero hacia el exterior de la célula y después en sentido contrario hacia el interior.

Son uno de los grupos principales de protozoos ameboides, incluyendo a la mayoría de los que se mueven por medio del flujo interno de citoplasma. Sus seudópodos son de tipo romo y en forma de dedo y se denominan lobopodios. La mayoría son unicelulares y son comunes en el suelo y en los hábitats acuáticos, encontrándose algunos en simbiosis con otro organismo, mientras que otros son patógenos.

Se identificó 01 especie siendo *Centropyxis sp.* con 25,3% (Figura 28).



Figura 28. Centropyxis sp.

Phylum Arthropoda

Los artrópodos, phylum al que pertenecen los crustáceos, son animales esquizocelomados que poseen como característica común la presencia de un exoesqueleto quitinoso y apéndices articulados (de ahí el nombre del grupo: arthro=articulación, podos=patas). El exoesqueleto implica un problema para el crecimiento por lo que el animal para crecer debe reemplazarlo periódicamente, proceso denominado muda o ecdisis. El período entre dos mudas se denomina estadio. Los artrópodos constituyen el Phylum más abundante de todo el reino animal representando aproximadamente el 70% de las especies existentes sobre el planeta.

Se obtuvieron **02** especies del Phylum, siendo las más representativas las siguientes: *Chydorus sp.* con 28 Org/m³ y *Hydrozetes sp.* con 20 Org/m³ (Figura 29 y 30).



Figura 29. Chydorus sp.

Figura 30. Hydrozetes sp.

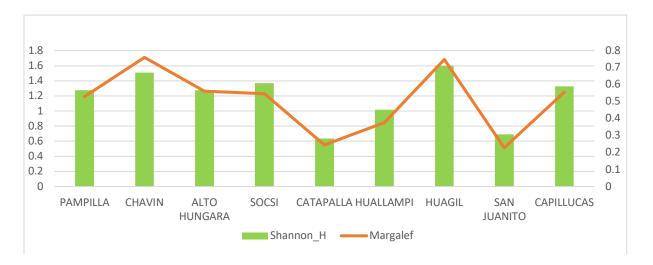
Phylum Rotífera

Los rotíferos juegan un papel fundamental en las cadenas tróficas pelágicas. Son un eslabón entre el fitoplancton y los consumidores secundarios, pero su importancia se acrecienta porque pueden transferir materia y energía desde bacterias y partículas detríticas de pequeño tamaño, que son recursos no utilizables por otros organismos planctónicos. Unas pocas especies pueden ser depredadoras de otras especies de rotíferos.

Se identificaron **08** especies siendo *Rotaria sp.*, con 479 (28,0%) y *Ascomorpha sp.* con 268 (15,7%) (Figura 31 y 32).

Figura 31. Rotaria sp.

Figura 32. Ascomorpha sp.


8.3.2. Índices de Diversidad e Indicadores Biológicos

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Específica Shannon – Wiener osciló de 0,636 a 1,596; encontrándose en el rango de poca diversidad (Figura 33). La más baja se presentó en la estación de Catapalla, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.)

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,228 a 0,760; encontrándose en Baja biodiversidad (en general resultado de efectos antropogénicos) (Figura 33). Encontrándose con valores de baja biodiversidad en la estación de San Juanito, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

Figura 33. Índices de diversidad aplicados al zooplancton – octubre 2020

IX. RESULTADOS DE LA EVALUACIÓN DEL BENTOS

Uno de los grandes grupos de comunidades del agua dulce y de mar es los bentos, constituido por los organismos tanto vegetales como animales que viven relacionados con el fondo, semienterrados, fijos o que pueden moverse sin alejarse demasiado de él.

Bajo la denominación de "bentos" se incluyen los seres que viven en estrecha relación con el fondo acuático, tanto vegetales (fitobentos) como animales (zoobentos). Los organismos bentónicos que habitan sobre la superficie del sustrato son llamados epibiontes (epiflora y epifauna) y pueden vivir fijos al sustrato, otros pueden caminar sobre él, arrastrarse, o nadar en sus inmediaciones (nectobentos); el término epibiosis, a pesar de su sentido general, se emplea casi exclusivamente para los sustratos duros.

9.1. Muestreo Biológico

Las muestras biológicas se obtuvieron empleando la red surber (500 micras) para macroinvertebrados y un cuter - cepillo para el fitoplancton bentónico.

9.2. Macroinvertebrados bentónicos

Para los macroinvertebrados bentónicos se identificaron 06 Phylum: Platyhelminthes, Annelida, Nematoda, Mollusca y Arthropoda. La predominancia es del Phylum Arthropoda con 51 660 Org/m² (90,39%), Phylum Annelida con 2 930 Org/m² (5,13%), Phylum Mollusca con 2 020 Org/m² (3,53%), Phylum Platyhelminthes con 520 Org/m² (0,91%) y Phylum Nematoda con 20 Org/m² (0,03%) (Figura 34).

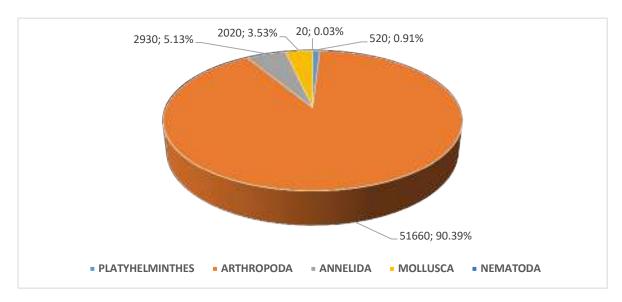
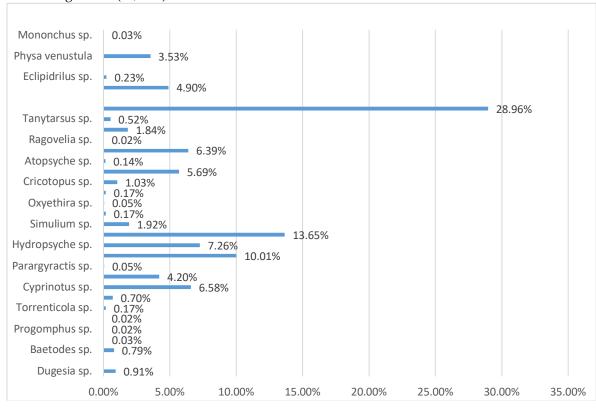



Figura 34. Macroinvertebrados bentónicos identificados en octubre 2020

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 35), el phyllum dominante es Arthropoda, siendo *Microcylloepus sp.*, la especie con mayor abundancia relativa registrada (28,96%).

Figura 35. Abundancia relativa (%) de las especies de macroinvertebrados bentónicos en las estaciones muestreadas - octubre 2020.

9.2.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 36 especies pertenecientes a cinco divisiones: Platyhelminthes, Annelida, Nematoda, Mollusca y Arthropoda. La abundancia total registrada en las 18 estaciones de muestreo fue de 33 370 organismos/m², teniendo mayor importancia en riqueza de especies los Arthropodos (Figura 37).

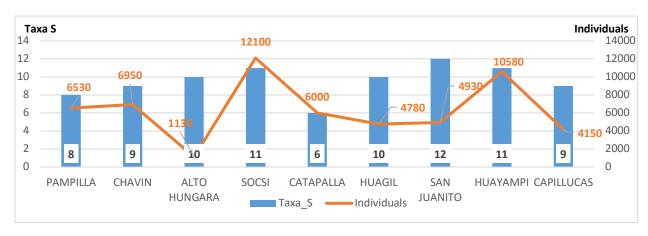


Figura 36. Riqueza y abundancia de las especies de bentos octubre 2020

Phylum Arthropoda

Se obtuvieron 24 especies del Phylum Arthropoda; encontrándose la más representativa la especie *Microcylloepus sp.* con 16 550 Org/m² (Figura 37).

Figura 37. Microcylloepus sp.

Phylum Annelida

Se obtuvieron 02 especie del Phylum Annelida, encontrándose la especie más representativa *Nais sp.*, con 2 800 Org/m² (Figura 38).

Figura 38. Nais sp.

Phylum Mollusca

Se obtuvo 01 especie del Phylum Mollusca, encontrándose para la clase Gastropoda la especie más representativa *Physa venustula* con 2 20 Org/m². (Figura 39).

Figura 39. Physa venustula

Phylum Nematoda

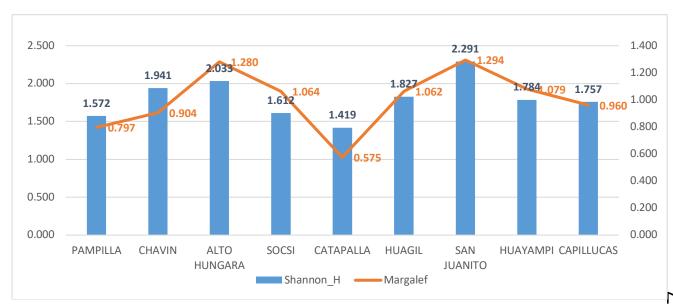
Se obtuvo 01 especie del Phylum Nematoda, encontrándose la especie más representativa *Mononchus sp.*; con 20 Org/m² (Figura 40).

Figura 40. Mononchus sp.

Phylum Platyhelminthes

Se obtuvo 01 especies del Phylum Platyhelminthes, encontrándose para la clase Turbellaria la especie *Dugesia sp.*, con 520 Org/m² (Figura 41).

Figura 41. Dugesia sp.


9.2.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 1,419 a 2,291; encontrándose de acuerdo a los rangos de poca a mediana diversidad (Figura 42). La más baja se presentó en la estación de Catapalla, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.).

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 0,575 a 1,294; encontrándose en el rango de baja biodiversidad (Figura 42). Encontrándose con valores de baja biodiversidad en la estación de Catapalla, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

Figura 42. Índices de diversidad biológica de macroinvertebrados bentónicos encontrado en el presente monitoreo – octubre 2020

% EPT

Según el índice Biótico BMWP Biological Monitoring Working Party, es uno de los índices que aún no han sido estandarizados como una metodología para establecer las condiciones de calidad del agua en los ríos de la sierra y costa del Perú. Por lo que se decidió aplicar el índice % EPT que, si se encuentra estandarizado para los ríos de la costa, sierra y selva del Perú y de acuerdo a los resultados obtenidos sería un buen indicador de calidad de agua para los ríos de la zona evaluada, sin dejar de dar valor al primer índice.

Para el presente monitoreo (octubre 2020), se pudo observar cuatro zonas de calidad bien definidas, según la Figura 43:

- Mala: Huallampi.
- Regular: Chavin, Alto Hungara, Socsi, Huagil San Juanito y Capillucas.
- Buena: Catapalla.
- Muy Buena: Pampilla.

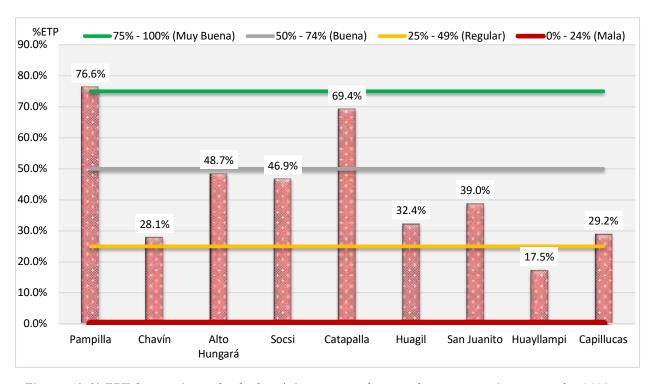


Figura 43. % EPT de macroinvertebrados bentónicos encontrados para el presente monitoreo – octubre 2020.

9.3. Fitoplancton bentónico

Las especies predominantes de fitoplancton bentónico en todos los puntos de muestreo pertenecen a la División Bacillariophyta (comúnmente llamadas diatomeas), presentando 156 cel/L (83,40%), el segundo grupo dominante fueron las Chlorophytas, con 22 cel/L (11,8 %) y el tercer grupo fueron las Cyanobacterias con 9 cel/L (4,80 %) como se puede observar en la Figura 44.

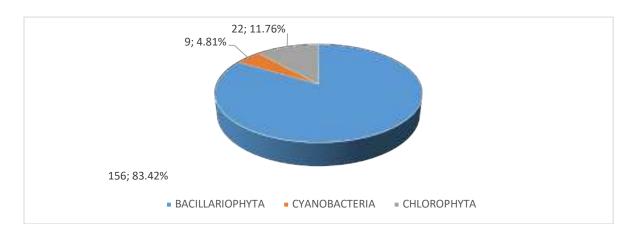
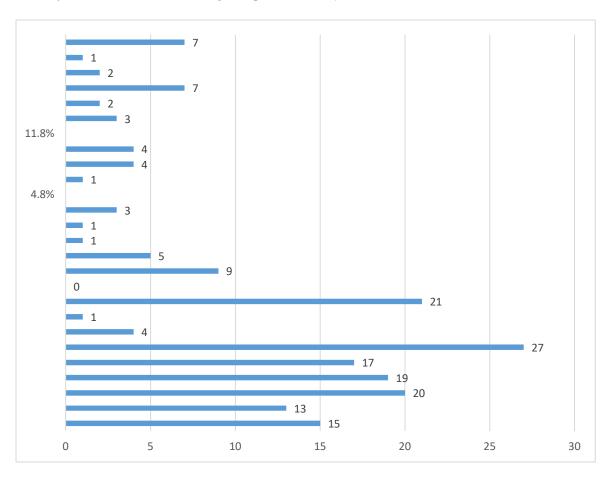



Figura 44. Porcentaje de divisiones de fitoplancton bentónico identificado – octubre 2020

De acuerdo a la distribución de la abundancia relativa de las especies en todas las estaciones (Figura 45), el phyllum con mayor presencia es Bacillariophytas, siendo *Fragillaria capucina* (14,4%) especie con mayor abundancia relativa, seguida por *Navicula sp.* (11,2%).

Figura 45. Abundancia relativa (%) de las especies de fitoplancton bentónico en las estaciones muestreadas - octubre 2020

9.3.1. Riqueza y Abundancia de las estaciones muestreadas

Se identificaron 24 especies pertenecientes a tres divisiones: Bacillariophytas, Cyanophytas y Chlorophyta. La abundancia total registrada en las 9 estaciones de muestreo fue de 187 cél/mm², teniendo mayor importancia en riqueza de especies las Bacillariophytas (Figura 46).

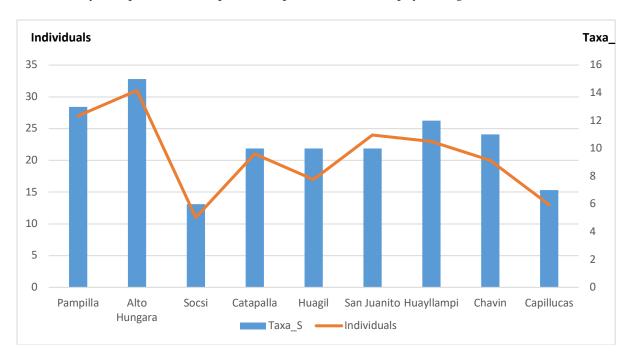


Figura 46. Abundancia y riqueza del fitoplancton bentónico en las estaciones muestreadas – octubre 2020

División Bacillariophyta

En la División Bacillariophyta se observaron 15 especies donde las más representativas han sido *Fragillaria capucina* con **27 cél/mm²** (Figura 47).

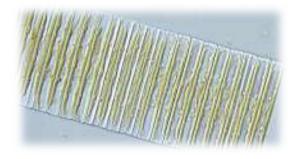
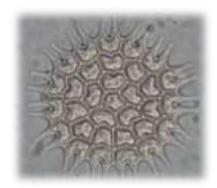



Figura 47. Fragillaria capucina

Se registraron 06 especies en la División Chlorophyta entre las más destacadas: *Pediastrum boryanum (cenobio)* con **7 cél/mm²** (Figura 48).

Figura 48. Pediastrum boryanum (cenobio).

División Cyanophytas

En la División Cyanophytas, registró 05 especies, siendo *Oscillatoria tenuis (filamento)* con 3 cél/mm² (Figura 49).

Figura 49. Oscillatoria tenuis (filamento)

9.3.2. Índices de Diversidad Biológica

Índice de Diversidad Especifica Shannon - Wiener (H')

El índice de Diversidad Especifica Shannon – Wiener osciló de 1,720 a 2,595 encontrándose de acuerdo al rango de mediana diversidad (Figura 50). La más baja se presentó en la estación de **Socsi**, por lo se puede decir que la zona está sometido a tensión (vertimientos, dragados, canalizaciones, construcciones, etc.).

Índice de biodiversidad de Margalef

El presente índice de biodiversidad de Margalef osciló de 2,085 a 4,077 encontrándose en rango de baja a una mediana biodiversidad (Figura 54). Encontrándose con valores de baja biodiversidad en la estación de **Socsi**, por lo se puede decir que las zonas están sometidas a efectos antropogénicos.

Figura 50. Índice de diversidad biológico del fitoplancton bentónicos en el monitoreo – octubre 2020

IDG

El índice biótico IDG utiliza a las diatomeas para hacer una valoración de la calidad del agua. Estas algas son conocidas como buenos indicadores y su uso se ha reportado e diversos países tanto sudamericanos como europeos. Los resultados por punto de muestreo siguen el mismo patrón de los índices de diversidad. (Tabla 27 y Figura 51)

Tabla 27. Índice diatómico genérico (IDG) y clasificación por estación de muestreo – octubre 2019

IDG	Significado
4.04	Calidad normal.Polución débil
4.05	Calidad normal.Polución débil
3.90	Polución moderada. Eutrofización
4.06	Calidad normal.Polución débil
4.07	Calidad normal.Polución débil
4.05	Calidad normal.Polución débil
4.06	Calidad normal.Polución débil
4.00	Calidad normal.Polución débil
4.00	Calidad normal.Polución débil
	4.04 4.05 3.90 4.06 4.07 4.05 4.06 4.00

Elaborado: Celepsa - Octubre 2020

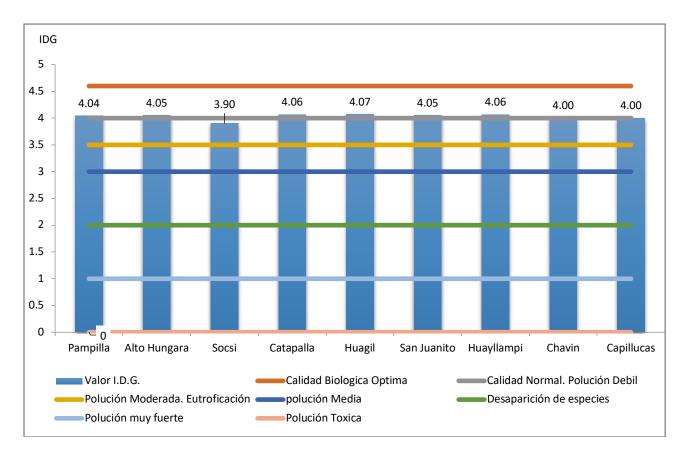


Figura 51. IDG de fitoplancton bentónicos encontrados para el presente monitoreo octubre 2020.

X. TECNICAS MULTIVARIADAS DE ANÁLISIS PARA LA RELACIÓN ENTRE COMUNIDADES SOBRE LA POBLACIÓN DE CAMARÓN Y CALIDAD DE AGUA EN BASE A BIOINDICADORES.

Análisis de Frecuencias de Tamaños de Camarón a lo largo del río Cañete.

Distribución de Tamaños

El rango de tamaños del camarón estuvo entre los 30 y 169 mm de longitud. Los rangos de tamaños por sexo indican que la mayor frecuencia para machos se encontró entre los rangos de 80-89 mm y para las hembras se encontraron entre los rangos de 60-69 mm. Asimismo, el porcentaje de ejemplares > a 70 mm fueron más altos en la población de machos (50.26%) que en hembras (49.74%).

El Análisis log-linear demostró que la distribución espacial de los camarones a lo largo del río, tiene una relación con el sexo, los márgenes del rio, así como la altitud de las estaciones muestreadas.

Se pudo observar claramente que los ejemplares machos menores a 70 mm estuvieron distribuidos en las zonas bajas del área de estudio (Pampilla, Alto Hungara, Pte. Socsi y Pte. Catapalla) encontrándose una mayor abundancia de camarones machos hacia las márgenes del rio y las hembras distribuidas en las márgenes y parte central del rio. Ejemplares machos mayores a 70 mm fueron localizados principalmente en las estaciones: San Juanito, Huayllampi, Chavín y Capillucas) hacia ambas márgenes del rio Cañete. Por otro lado, ejemplares hembras mayores a 70 mm fueron localizadas en la estación: (Pte. Socsi, Pte. Catapalla, San Juanito, Huayllampi, Chavín y Capillucas). Además, se observó un ligero aumento de camarones hembras mayores a 70 mm en la estación Chavín.

Análisis del componente ambiental sobre la distribución por tamaños.

Las variables con mayor efecto de discriminación entre los grupos fueron temperatura del agua, temperatura ambiental, Oxigeno, dureza, pH, transparencia y caudal.

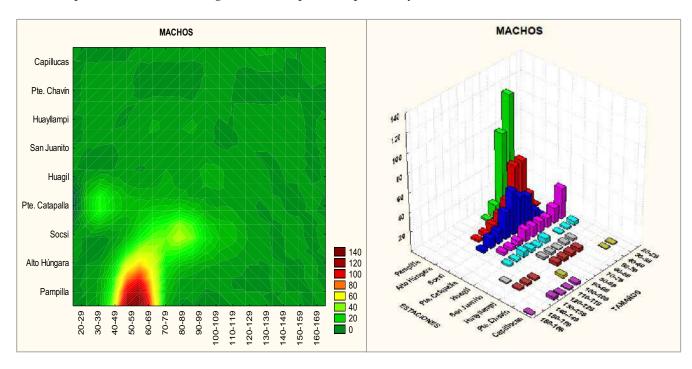


Figura 52. Frecuencia de tamaños por sexo (machos) y estación de muestreo

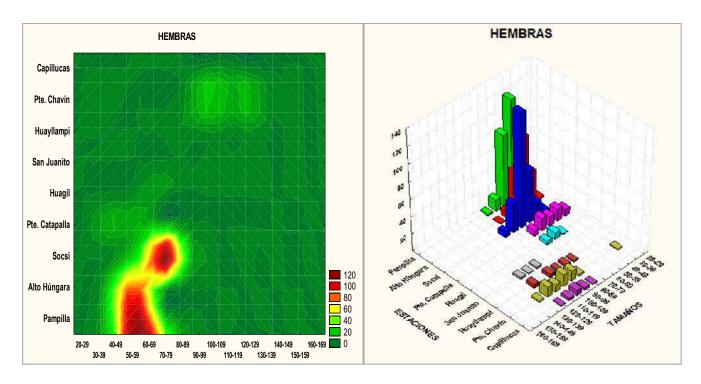


Figura 53. Frecuencia de tamaños por sexo (hembras) y estación de muestreo

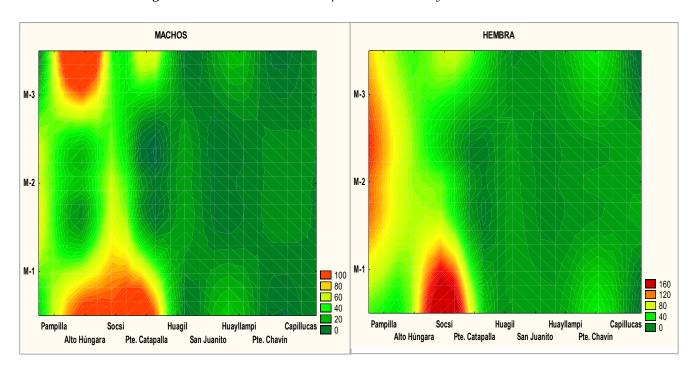


Figura 54. Distribución de la abundancia de camarones en relación al cauce del rio y al sexo

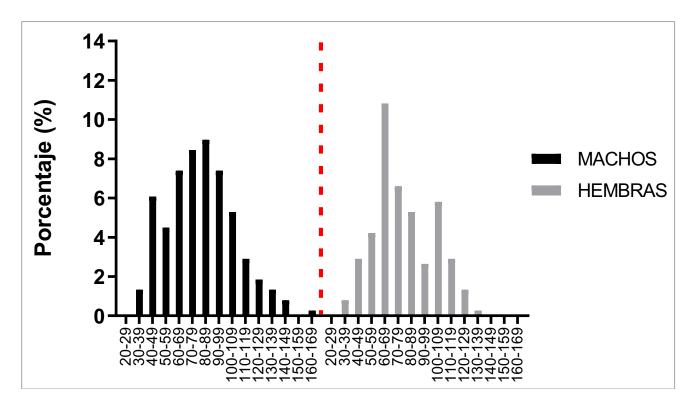


Figura 59. Distribución de la frecuencia de tamaños por sexo

10.1. Análisis del efecto ambiental sobre el camarón de rio

Los resultados indican una relación directa entre las mayores abundancias del camarón con la temperatura del agua y la dureza del agua, que fueron medidas en las estaciones de muestreo: Pampilla y San Juanito, zonas intermedias y bajas del área de estudio, así como, cierta asociación con el perifiton (*Diatoma vulgare, Cymbella lanceolata, Pediastrum boryanum y Nitzschia sigmoidea*) y macroinvertebrados bentónicos (Ochrotrichia sp., y Hydropsyche sp.)

De manera contraria existe una relación directa entre la menor abundancia del camarón en la estación Capillucas influenciadas por la temperatura de ambiente y el oxígeno disuelto en el agua.

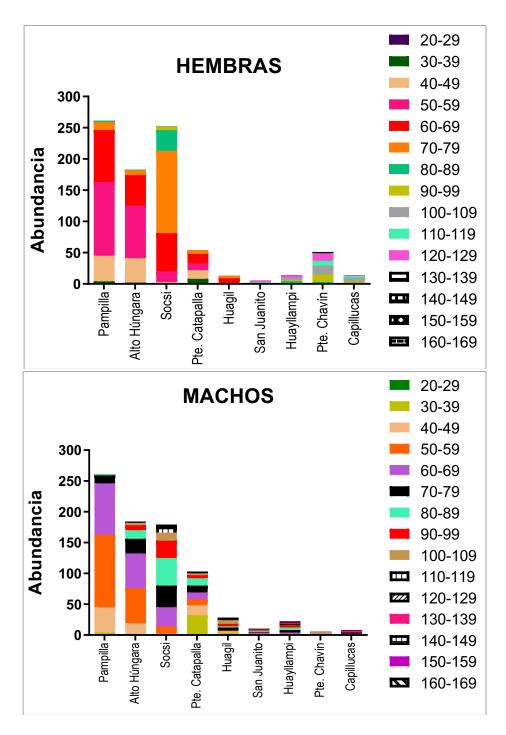
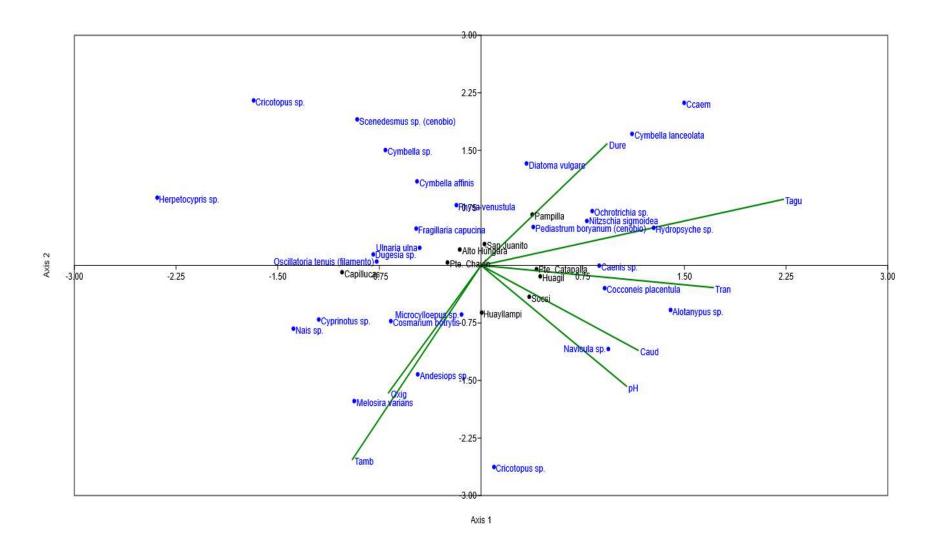
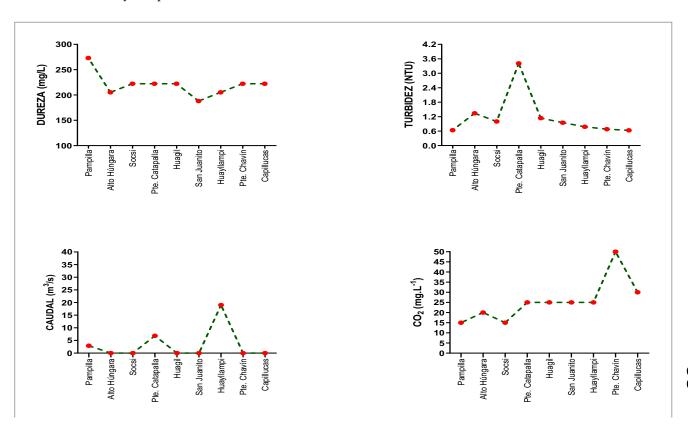


Figura 55. Abundancia de hembras y machos por estación de muestreo




Figura 56. Análisis de Correspondencia Canónica abundancia del camarón, variables ambientales e indicadores biológicos Monitoreo octubre 2020

10.2. Análisis de calidad de agua en base a indicadores biológicos

Análisis de parámetros fisicoquímicos.

Según las variables físico-químicas se pudo caracterizar las estaciones de la siguiente manera:

- La temperatura ambiental sufrió muchas variaciones en las diferentes estaciones de muestreo, teniendo una mínima de (22.4 °C) en Catapalla y máxima en Socsi (31.6°C), esto dependiendo del horario del día en que se registró este parámetro, lo que influenció en la temperatura del agua.
- Los valores de la temperatura del agua en las estaciones: Pampilla, Alto Hungara y Socsi ubicadas en la zona baja (0 500 m.s.n.m.), se mantuvieron entre 22.9 a 26.2; las estaciones Catapalla, Huagil y San Juanito (500 1100 m.s.n.m.) ubicadas en la zona media presentaron temperaturas entre 19.8 y 22.7°C, y las estaciones Huayllampi, Chavin y Capillucas (1100 1700 m.s.n.m.) ubicadas en las zonas altas presentaron valores entre 19.1 y 23.5.
- Los valores de turbidez siempre se mantuvieron bajos (0.6 3.4 NTU). Los valores de pH se mantuvieron entre los 8.0 y 8.5, lo que significa valores normales para este tipo de ambiente acuático, según los ECA agua (8.5).
- Según el Análisis de Componentes Principales (ACP) se concluye que la temperatura del agua, la temperatura del ambiente, pH, oxígeno disuelto y la transparencia fueron los parámetros que influenciaron las estaciones: Socsi, San Juanito, Huagil, Pte. Chavín, Capillucas y Alto Hungará.
- El caudal y la dureza del agua influenciaron las estaciones: Pampilla, Pte. Catapalla y Huayllampi.

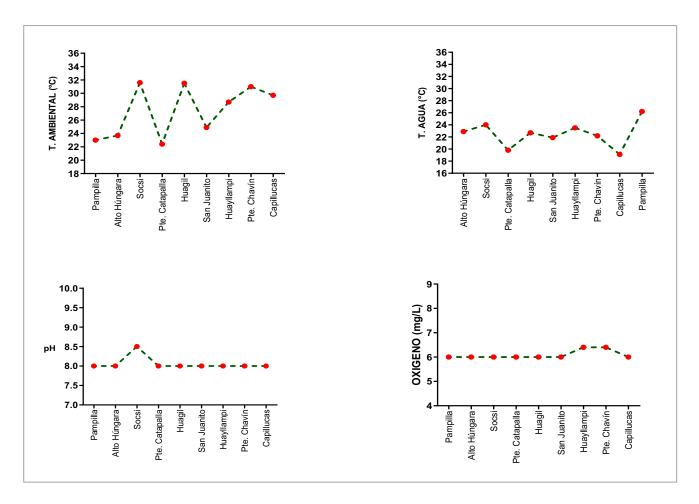


Figura 57. Parámetros de monitoreo por estaciones octubre 2020

Composición de especies del perifiton

Se identificaron un total de 24 especies de las cuales 15 pertenecen a la división Ochrophyta, 3 a la división Cyanobacteria, y 6 a la división Chlorophyta. Las especies dominantes al interior de cada división fueron: *Fragillaria capucina, Chroococcus sp. y Pediastrum boryanum* respectivamente.

Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de perifiton así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:

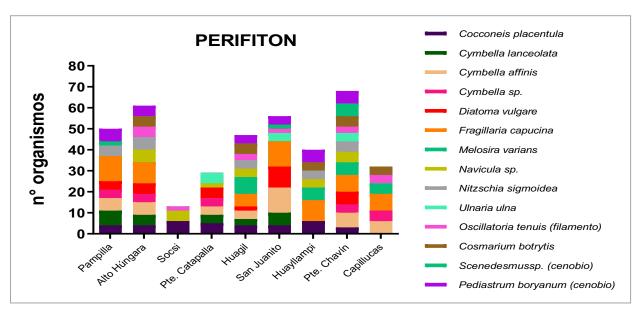
- 1. Las estaciones Capillucas y Chavín (1300-1700 m.s.n.m) ubicadas en la zona alta, estuvieron influenciadas por una mayor presencia de las microalgas: *Fragillaria capucina, Nitzchia sigmoidea, Cosmarium botrytis y Melosira varians*.
- 2. Las estaciones Pampilla (0-100 m.s.n.m), ubicada en la zona baja y la estación San Juanito (900-1100 m.s.n.m) ubicada en la zona media, fueron influenciadas por la presencia de las microalgas: *Scenedesmus sp., Cymbella sp. y Cymbella affinis*.

- 3. La estación Catapalla (500-700 m.s.n.m) ubicada en la zona media se vio influenciada por la presencia de las microalgas: *Ulnaria ulna y Cymbella lanceolata*.
- 4. Las estaciones Alto Hungara y Socsi (100-500 m.s.n.m) ubicada en la zona baja y la estación Huayllampi (1100-1300 m.s.n.m), ubicada en la zona alta, se vieron influenciadas por la microalga: *Oscillatoria tenuis*.

Composición de especies del macroinvertebrados bentónicos

Se identificaron un total de 29 especies de las cuales 02 pertenecen al phyllum Annelida, 24 al Arthropoda, 01 especie del phyllum Mollusca, 01 especie del phuyllum Nemátoda y 01 especie al phyllum Platyhelminthes. La especie dominante al interior de cada grupo taxonómico fueron: *Nais sp.* (phyllum Annelida), *Microcylloepus sp.* (phyllum Arthropoda) respectivamente.

Por medio del Análisis de Correspondencia (AC) se pudo caracterizar las zonas de muestreo en relación a las especies de macroinvertebrados bentónicos, así como, ver la distribución de estos organismos presentes en el agua del río Cañete a lo largo del área de estudio:


- 1. Las estaciones Alto Hungara y Socsi (100-500 m.s.n.m) ubicadas en la zona baja y la estación Chavín (1300-1500 m.s.n.m) ubicadas en la zona alta del área de estudio se caracterizaron por la presencia de las siguientes especies de macroinvertebrados bentónicos: *Cricotopus sp. y Physa venustula*
- 2. La estación Pampilla (0-100 m.s.n.m) ubicada en la zona baja y las estaciones Huagil y Pte. Catapalla (500-900 m.s.n.m) ubicadas en la zona media de estudio se caracterizaron por la presencia de los siguientes macroinvertebrados: *Caenis sp., Alotanypus sp. y Hydropsyche sp.*
- 3. La estación San Juanito (900-1100 m.s.n.m) ubicadas en la zona media del área de estudio se caracterizó por la presencia de los macroinvertebrados bentónicos: *Dugesia sp., Andesiops sp. y Cricotopus sp.*
- 4. La estación Huayllampi (1100-1300 m.s.n.m) ubicada en la zona alta, estuvo influenciada por los siguientes macroinvertebrados bentónicos: *Herpetocypris sp. y Nais sp.*

Distribución de especies del macroinvertebrados bentónicos, perifiton y su relación con las variables hídricas.

Los resultados del ACC indicaron lo siguiente:

El oxígeno disuelto influenció en la presencia de los macroinvertebrados: Physa venustula,
 Cyprinotus sp. y Herpetocypris sp. además de la presencia de la microalga: Cymbella affinis,
 Diatoma vulgare y Cosmarium botrytis.

- La presencia de las especies de macroinvertebrados: *Andesiops sp. y Microcylloepus sp.*, y así como las microalgas: *Ulnaria ulna, Melosira varians, Navicula sp.* estuvieron influenciados por la temperatura del ambiente, pH y la transparencia.
- La presencia de las especies de macroinvertebrados bentónicos: *Criccotopus sp., Dugesia sp., Alotanypus sp. y Caenis sp.,* así como de la microalga: *Cocconeis placentula* se vieron influenciadas por el caudal del agua.
- La presencia de las especies de macroinvertebrados bentónicos: *Hydropsyche sp.* y *Criccotopus sp.* así como de las microalgas: *Fragillaria capucina, Cymbela sp., Cymbella lanceolata y Nitzschia sigmoidea* se vieron influenciadas por la temperatura del agua y la dureza.

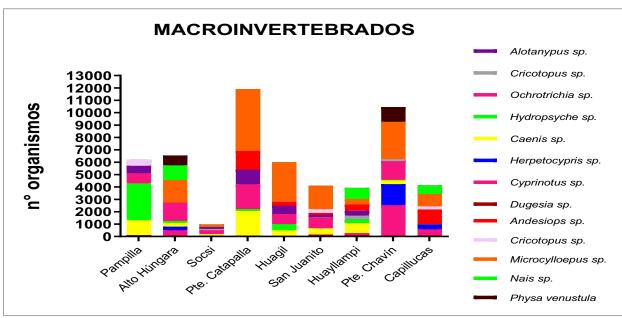


Figura 58. Abundancia de la comunidad del bentos por estaciones de muestreo

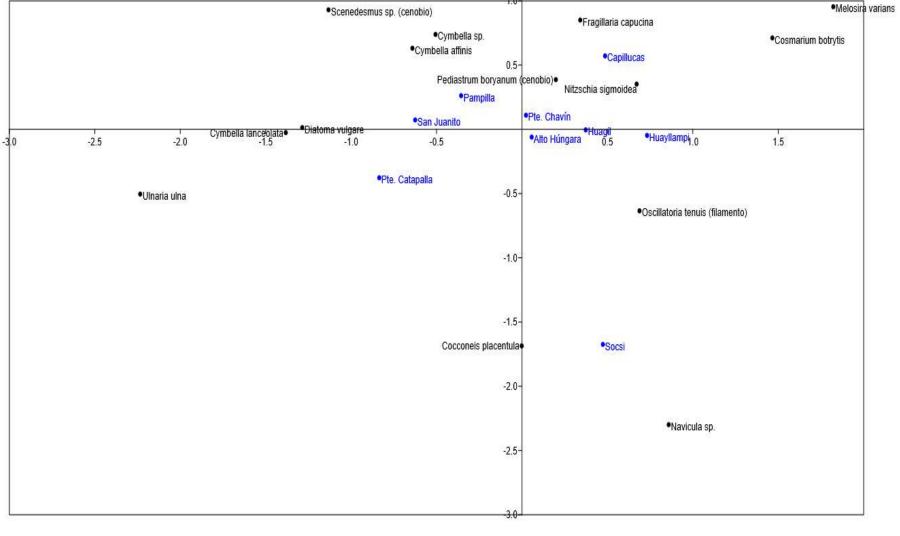


Figura 59. Análisis de correspondencia (AC) entre las estaciones de muestreo y el perifiton

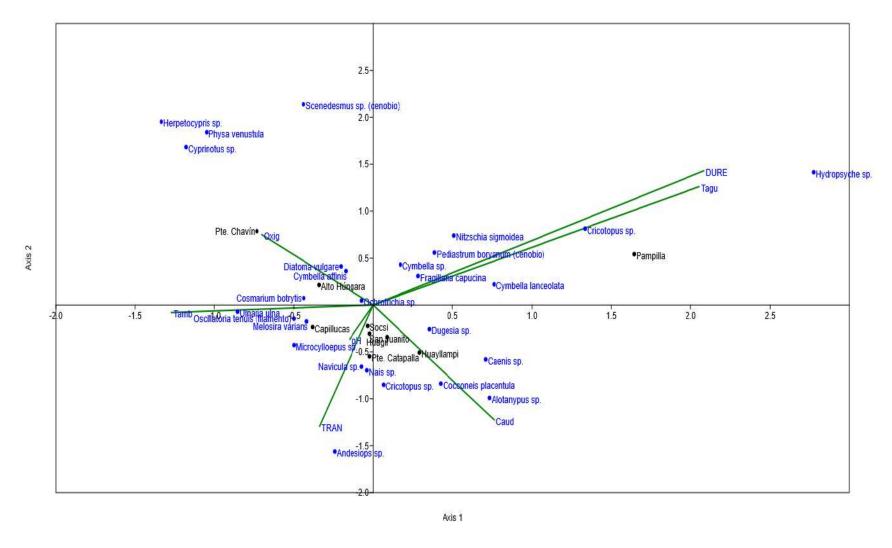


Figura 60. Análisis de correspondencia (AC) entre las estaciones de muestreo y el macrobentos

XI. CONCLUSIONES

- Las muestras evaluadas fueron realizadas aún 95% de significancia en cada estación de muestreo.
- De acuerdo a la distribución por estratos de los machos y hembras en el río Cañete, se observa que la población de hembras superó a la población de machos en diversas épocas del año, esto es producto del programa de repoblamiento intercuenca implementado en la zona de Caudal Ecológico, mejoro su habitabilidad para el crecimiento de las hembras, razón por la que ellas se adaptan y abundan desarrollandose óptimamente en dichos sectores.
- En base a la madurez gonadal, para los machos, el mayor porcentaje de la población se encuentra en estadio Inactivo o de Reposo y para las hembras, el mayor porcentaje de la población se encuentra en estadio Inactivo o de Reposo. Por lo tanto, para esta etapa de evaluación los machos y hembras representan una población que se encuentra a la espera de los cambios ambientales y así iniciar su proceso de reproducción, indicador de la capacidad de adaptación ni bien las condiciones favorezcan. Estos serán los primeros productores reclutas de primavera.
- Se evaluó que el 35,38% de la abundancia y el 67,07% de biomasa estaría disponible de ser capturada en los próximos meses, considerando la finalización de época de veda.
- Comparando octubre 2019 a octubre 2020, la biomasa capturable se incrementó en un 7,19% y la Abundancia capturable aumento en un 8,34%.
- Entre la biomasa comercial capturable destacan las tallas 74,5 a 114,5 mm, que representan el 61,22%.
- La abundancia y la biomasa absoluta no podran ser comparables con los años anteriores de monitoreos debido a que no se pudo mantener el mismo metodod de muestreo de los mismos acausas de las restricciones de salud por el COVID 19, pero se puede mencionar que los trabajos sin mitigación sobre el cauce del rio en la principal zona de crecimiento del recurso, una posible sobre extracción por paralización económica ademas de la imposibilidad del repoblamiento a causa de la misma, deben haber disminuido la población del mismo para el presente año.
- En cuanto a la temperatura, los valores registrados muestran una mayor variación entre cada punto de muestreo, diferencia asociada a la hora de la medición y la ubicación de la estación de monitoreo. En general, la temperatura del agua para el presente monitoreo se encuentra dentro de los rangos para el desarrollo del camarón, observandose la disminucion de la poblacion conforme la temperatura desciende, indicandonos que es un factor que relaciona su distribución.
- De las estaciones en el presente monitoreo, el pH se encuentra dentro del rango de los niveles de los Estándares de Calidad Ambiental ECA (6,5 a 8,5).
- Los valores de oxígeno del presente monitoreo son normales dentro de las características típicas del sector del río y de los Estándares de Calidad Ambiental ECA (≥ 5).

- De acuerdo a la dureza los camarones se desenvuelven mejor en aguas con altas concentraciones de calcio y magnesio obteniéndose valores óptimos para su desarrollo en el presente monitoreo.
- Los valores de CO₂, de las estaciones no se encuentran dentro del rango sugerido donde se indica que valores < 7 mg/L permiten el desarrollo de la acuicultura.
- La erosión en la cuenca de drenaje o la descarga de efluentes, pueden aumentar el nivel normal de sedimentos en suspensión disminuyendo la penetración de la luz en el agua, y a su vez afectando o limitando la capacidad de vida de algunas comunidades biológicas. Por lo tanto, la turbidez evaluada es óptima para el desarrollo de los camarones.
- Para el fitoplancton la distribución con mayor presencia de abundancia relativa en todas las
 estaciones, fue el phyllum Bacillariophytas, con la especie siendo Fragillaria capucina especie con
 mayor abundancia relativa. De acuerdo a los índices evaluados La más baja se presentó en la
 estación de Socsi, por lo se puede decir que la zona está sometido a efectos antropogénicos
 (vertimientos, dragados, canalizaciones, construcciones, etc.).
- De acuerdo al zooplancton la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Rotífera, siendo *Rotaria sp*. De acuerdo a los índices evaluados la más baja se presentó en las estaciones de Catapalla y San Juanito, por lo se puede decir que están sometidas a efectos antropogénicos (vertimientos, dragados, canalizaciones, construcciones, etc.).
- De acuerdo al macroinvertebrados bentónicos la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phyllum Arthropoda, con la especie Microcylloepos sp. De acuerdo a los índices evaluados la más baja se presentó en la estación de Catapalla, por lo se puede decir que están sometidas a efectos antropogénicos (vertimientos, dragados, canalizaciones, construcciones, etc.). Además, el %EPT oscilo de mala a muy buena.
- De acuerdo al fitoplancton bentónico la distribución con mayor presencia de abundancia relativa en todas estaciones, fue el phylum Bacillariophyta, con la especie *Fragillaria capucina*. De acuerdo a los índices evaluados la más baja se presentó en la estación de Socsi, por lo se puede decir que están sometidas a efectos antropogénicos. Además, el IDG oscilo de calidad normal o moderada.
- Se sugiere la existencia de una distribución espacial de los camarones, relacionada con el tamaño debido a la diferencia en la ubicación de los individuos mayores y menores a 70 mm a lo largo del rio, y en cada uno de sus márgenes, posiblemente por factores como el sexo y parámetros físicos-químicos como la temperatura del agua, pH, caudal, etc.
- Es posible que la mayor abundancia de hembras mayores a 70mm en las zonas altas (San Juanito, Huayllampi, Chavín y Capillucas) indique zonas potenciales para el desarrollo de camarones hembras, esto debido a las condiciones físico-químicas presentadas en dichas estaciones de monitoreo que incrementaron sus índices de preferencia para ellas.
- Durante el monitoreo correspondiente al mes de octubre-2020, las zonas de mayor abundancia de camarón se distribuyeron en las partes bajas a medias del río Cañete (Pampilla, Alto Hungara y Pte. Socsi).

- Se pudo observar baja abundancia de organismos machos y hembras del camarón en los sectores Huagil, San Juanito y Capillucas, por la incidencia de las obras en el cauce de rio para el mejoramiento de bocatomas agricolas en ese sector que limitaron la migración del mismo y modificaron los parámetros fisicoquímicos (dureza, turbidez y temperatura del agua) evitando el desplazamiento natural de los camarones aguas arriba, en esta época del año.
- Las zonas bajas del Río Cañete (0-500 m.s.n.m) presentaron algunas especies (Diatoma vulgare, Fragillaria capuccina, Navicula minúscula, Caenis sp.) indicadoras de buena calidad de agua, por lo que sugerimos una relación directa con la mayor abundancia de los camarones.
- En el estrato que abarca desde los 1100 a 1700 m.s.n.m (zonas altas), las estaciones presentan una mayor abundancia de especies indicadoras de buena calidad de agua, tanto macrobentos (Caenis sp., Andesiops sp., Herpetocypris sp., Alotanypus sp., Nais sp.), como fitoplancton (Cymbella affinis, Diatoma vulgare y Navicula sp.) sugiriendo una baja o leve contaminación.
- En el estrato que abarca desde los 0 a 1100 m.s.n.m (zonas bajas-intermedias), las estaciones presentan una disminución en la abundancia de especies indicadoras de buena calidad de agua, es decir, se tendría una contaminación moderada, pero que no llegaría a alterar de manera significativa las comunidades biológicas.

XII. RECOMENDACIONES

- Se recomienda seguir con las estimaciones de bio-indicadores de calidad de agua mediante el IDG y ACP.
- Se recomienda continuar con el repoblamiento introcuenca de juveniles en el Caudal Ecológico y aguas arriba de la presa Capillucas, que permita mantener la distribución y población adecuada en dicho tramo, involucrando a las autoridades locales, para que entiendan la necesidad de lograr un desarrollo económico con responsabilidad ambiental y aprovechamiento racional sobre sus recursos económicos potenciales como el camarón de rio.
- Se recomienda seguir con el Programa de Control y Vigilancia del camarón de río para ayudar a una recuperación rápida del recurso minimizando los impactos antrópicos acontecidos el 2020 y ampliarlo hacia los sectores del caudal ecológico por encontrarse la especie muy vulnerable debido al bajo caudal y muy expuesta a ser modificada de manera negativa por intervenciones antrópicas.

XIII. BIBLIOGRAFÍA

APHA-AWWA-WEF. 1999. Standard Methods for the Examination of Water and Wastewater. 20th Edition. Part 10200, PlanKton. Washington.

Espino, M. Y C. Wosnitza- Mendo. 1984. Manuales de Evaluación de peces N°1 área barrida. Int. Mar Perú N° 86. 31 pp.

Ministerio de Pesquería, Industria Pesquera de Consumo Humano Directo. 2001. Protocolo para el monitoreo de efluentes y cuerpo marino receptor. Diario Oficial "El Peruano", Normas Legales, Separata Especial, pp 215564-215582 - Lima.

Viacava M., Aitken R y Llanos J. 1978. Estudio del camarón en el Perú 1975 - 1976. Boletín del Instituto del Mar del Perú. Vol. 3 No 5.

Walsh Perú S.A. 1998.Volumen II: Diagnóstico Ambiental para el EIA del Proyecto Hidroeléctrico El Platanal. Cuenca Media y Alta del Río Cañete. Lima - Perú.

Walsh Perú S.A. julio 2001. Primer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. 2001. Evaluación Poblacional y Ambiental del Camarón de Río Cryphiops caementerius en el Río Cañete. Lima - Perú.

Walsh Perú S.A. octubre 2001. Segundo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal-Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2002. Tercer Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2002. Cuarto Monitoreo de Camarón de Río Cryphíops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. mayo 2003. Quinto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2003. Sexto Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. julio 2004. Séptimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2004. Octavo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2005. Noveno Monitoreo de Camarón de Río Cryphíops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2005. Décimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. junio 2006. Undécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

Walsh Perú S.A. octubre 2006. Duodécimo Monitoreo de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase Previa. Lima - Perú.

CELEPSA. julio 2007. Décimo Tercer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2007. Décimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2008. Décimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2008. Décimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2009. Décimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. octubre 2009. Décimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Construcción. Lima - Perú.

CELEPSA. julio 2010. Décimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2010. Vigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2011. Vigésimo Primer Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2011. Vigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2012. Vigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2012. Vigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2013. Vigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2013. Vigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2014. Vigésimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2014. Vigésimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2015. Vigésimo Noveno Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2015. Trigésimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2016. Trigésimo Primero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Segundo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2017. Trigésimo Tercero Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2016. Trigésimo Cuarto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2018. Trigésimo Quinto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2018. Trigésimo Sexto Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. julio 2019. Trigésimo Séptimo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

CELEPSA. octubre 2019. Trigésimo Octavo Monitoreo Biológico de Camarón de Río Cryphiops caementarius en el río Cañete. Proyecto Hidroeléctrico el Platanal - Fase de Operación. Lima - Perú.

XIV. ANEXOS

ANEXO 1 MARCO TEÓRICO PARA EL PROGRAMA DE MONITOREO

El Programa de Monitoreo de Camarones permitirá hacer un seguimiento de las variables determinantes de la población y detectar - con validez estadística - en qué momento se superan los Límites Aceptables de Cambio (LACs), estableciendo las medidas a considerar como complemento al Plan de Manejo.

Para detectar los cambios inducidos en la población por los efectos del proyecto, la serie de datos a registrarse se organizará considerando un diseño "antes del proyecto" y "durante el proyecto"; así como, "área no perturbada" y "área impactada". Este diseño (ACDI) se puede expresar de modo gráfico como sigue:

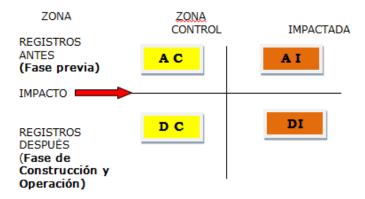


Figura 61. Programa de Monitoreo

Un diseño ADCI¹tiene como objetivo la recopilación de información tanto en la zona en que se registrarán efectos ambientales como en una zona de control que esté libre de toda influencia de impacto. Para ambas zonas se requerirán registros antes y después de los efectos ocurridos.

La comparación del modo en que evolucionan las "zonas de control" e "impactadas" luego de la ocurrencia del impacto, es la forma más eficiente de demostrar la existencia de unas comparaciones estadísticas entre "zonas" y entre los registros "antes" y "después" de los impactos se harán según un diseño muestra (el diseño experimental no resulta adecuado para este tipo de evaluaciones). Cada una de las estimaciones de cualquiera de las variables en análisis estará acompañada de su correspondiente Intervalo de Confianza (IC). Al comparar una variable en dos momentos o en dos zonas, se tomará como evidencia de "diferencias estadísticamente significativas", entre ambas, si sus correspondientes IC no se sobreponen.

La selección de las áreas no perturbadas (zonas de control) y de las áreas no impactadas (zonas impactadas) tomará en cuenta los sectores del río Cañete evaluados. A continuación, se describen las características de estos sectores en función del marco teórico del monitoreo y los resultados obtenidos.

¹Sánchez, E. 2000 Determinación de los patrones espacio-temporales de uso recreativo de la Reserva Nacional de Paracas y estimación del Impacto Ambiental de esta actividad. Estudio. Instituto Nacional de Recursos Naturales - INRENA. Lima.

ANEXO 2

Tabla 28. Datos Características de las Estacione de muestreo

ESTACION	FECHA	HORA	COORDENADA ESTE	COORDENADA SUR	T.AMB. ºC	T.AGUA ºC	Velocidad (m/s)	Ancho del río (m)	Profundidades del río (m)	Nitrito	рН	OXIGENO (mg/L)	CO2 (mg/L)	DUREZA (mg/L)	TRANSPAREN CIA (NTU)	Caudal (m3/s)
PAMPILLA	2010/2020	12:42	351495	8548755	23.0	26.2	0.50	18.0	0.33	0.0	8.00	6.0	15	273.00	0.64	2.92
ALTO HUNGARA	21/10/2020	10:45	362981	8551469	23.7	22.9	0.00	0.0	0.00	0.0	8.00	6.0	20	205.20	1.34	0.00
SOCSI	21/10/2020	13:50	369518	8558703	31.6	24.0	0.00	0.0	0.00	0.0	8.50	6.0	15	222.30	1.00	0.00
CATAPALLA	24/10/2020	08:40	380863	8572140	22.4	19.8	0.72	19.0	0.50	0.0	8.00	6.0	25	222.30	3.41	6.85
HUAGIL	23/10/2020	11:40	387405	8578134	31.5	22.7	0.00	0.0	0.00	0.0	8.00	6.0	25	222.30	1.14	0.00
SAN JUANITO	23/10/2020	09:30	394615	8580204	24.9	21.9	0.00	0.0	0.00	0.0	8.00	6.0	25	188.10	0.95	0.00
HUAYLLAMPI	22/10/2020	15:30	401778	8583201	28.7	23.5	0.88	37.5	0.58	0.0	8.00	6.4	25	205.20	0.78	19.01
CHAVIN	22/10/2020	12:32	397486	8591178	31.0	22.2	0.00	0.0	0.00	0.0	8.00	6.4	50	222.30	0.68	0.00
CAPILLUCAS	22/10/2020	10:23	395325	8597004	29.7	19.1	0.00	0.0	0.00	8.0	8.00	6.0	30	222.30	0.63	0.00

Tabla 29. Resultados de los Muestreos Biométricos

Tabla 30. Resultados de los Muestreos Biométricos

NTERVALOS	LONG. TOTAL	LONG. CEFALOTORAX	PESO TOTAL	PESO ABDOMEN gr.	SEXO	ESTADO DE MADUREZ	SEXO		ESTACIÓN
	mm.	mm.	gr.			0	МАСНО	HEMBRA	
20-24									
25-29									
20 20									
						[0	0]
30-34	30	10	0.5	0.2	М	1	1		CATAPALLA
	34	12	0.5	0.3	М	1	1		CATAPALLA
	33	11	0.8	0.5	М	1	1		HUAGIL
	34	12	0.7	0.3	М	1	1		HUAGIL
35-39	35	12	1.1	0.5	н	1		1	PAMPILLA
33-33	37	13	0.8	0.3	H	1		1	CATAPALLA
	39	16	1.2	0.4	Н	1		1	CATAPALLA
	37	12	0.8	0.5	M	1	1		HUAGIL
						F			1
						<u> </u>	5	3]
40-44	43	15	1.8	0.9	Н	1		1	PAMPILLA
	42	15	1.8	0.9	M	1	1		PAMPILLA
	40	15	1.3	0.7	M	1	1		PAMPILLA
	42	20	2.1	0.7	Н	1		1	PAMPILLA
	40	15	1.3	0.9	Н	1		1	CATAPALLA
	43	16	1.3	0.7	M	1	1		CATAPALLA
	41	15	1.2	0.7	M	1	1		CATAPALLA
	41	16	1.1	0.7	M	1	1		CATAPALLA
	42	16	1.5	0.8	M	1	1		CATAPALLA
	44	16	1.6	0.9	M	1	1		HUAGIL
	40	14	1.5	0.8	M	1	1		HUAGIL
	44	16	1.9	1.0	M	1	1		HUAGIL
	40	13	1.0	0.6	М	1	1		HUAGIL
						_			
45-49	45	20	3.0	1.1	M	2	1		PAMPILLA
	45	14	1.8	0.9	Н	1		1	PAMPILLA
	49	17	2.7	1.3	Н	1		1	PAMPILLA
	46	15	3.3	1.1	M	1	1		PAMPILLA
	45	20	2.7	1.2	M	1	1		PAMPILLA
	45	15	2.7	0.9	Н	3		1	PAMPILLA ALTO HUNGAI
	48	20	2.8	1.5	Н	1		1	ALTO HUNGA
	47	17	2.7	1.3	M	1	1	4	ALTO HUNGAI
	48	16	2.9	1.5	Н	1		1	ALTO HUNGAI
	45 45	16	2.3	1.2	M M	1 1	1		ALTO HUNGAI
	45	16 17	2.0	1.1 1.4	Н	2	1	1	SOCSI
	48 45	17	2.7 2.4	1.4	M	1	1	1	SOCSI
	45 47	15	2.4	2.5	Н	1	!	1	SOCSI
	47 45	17	2.5 1.8	0.8	M	1	1	1	CATAPALLA
	45	17	1.8	1.1	н	1		1	CATAPALLA
	48	20	2.2	1.1	М	1	1	1	CATAPALLA
									CATAPALLA
	48 48	18 18	2.0 2.3	1.1 1.3	M M	1 1	1 1		HUAGIL
	49	18	2.3	1.2	M	1	1		HUAGIL
	45	17	2.0	1.1	M	1	1		HUAGIL

1									
50-54	54	20	4.2	2.3	Н	2		1	ALTO HUNGARA
	53	20	3.7	2	Н	1		1	ALTO HUNGARA
	50	20	3.7	1.6	М	2	1		ALTO HUNGARA
	50	13	3.3	1.8	M	2	1		ALTO HUNGARA
	50	20	3.2	1.6	Н	1		1	ALTO HUNGARA
	53	20	3.6	1.9	M	1	1		SOCSI
	52	20	3.8	1.2	Н	1		1	SOCSI
	50	20	2.7	1.5	Н	1		1	SOCSI
	51	18	2.4	1.4	Н	1		1	CATAPALLA
	51	20	2.2	1.3	M	1	1		CATAPALLA
	50	20	3.1	1.6	M	1	1		SAN JUANITO
55-59	55	20	4.3	1.7	М	2	1		PAMPILLA
55-59	56 56	20	5.2	2.5	H	3	ı	1	PAMPILLA
	55	20	4	2.3	Н	2		1	PAMPILLA
	57	20	4.7	1.9	н	2		1	PAMPILLA
	57	20	3.9	1.1	Н	2		1	PAMPILLA
	58	22	5.7	2.4	M	2	1		ALTO HUNGARA
	58	22	5.0	2.4	M	2	1		ALTO HUNGARA
	56	20	4.1	2.0	M	2	1		ALTO HUNGARA
	58	20	4.3	1.9	M	2	1		ALTO HUNGARA
	58	22	4.4	2.1	М	1	1		ALTO HUNGARA
	58	22	4.6	2.0	М	2	1		SOCSI
	55	20	3.9	2.1	Н	1		1	SOCSI
	57	22	4.1	2.0	M	1	1		CATAPALLA
	55	28	5.2	1.8	Н	1		1	CATAPALLA
	58	22	3.3	1.6	M	1	1		CATAPALLA
	55	22	3.3	1.7	Н	2		1	CATAPALLA
	58	24	4.3	2.1	Н	2		1	CATAPALLA
	57	23	3.6	1.8	M	2	1		CATAPALLA
	55	21	3.4	1.9	Н	2		1	CATAPALLA
	59	23	4.0	2.2	Н	2		1	CATAPALLA
	57	23	3.9	2.1	M	2	1		HUAGIL
	55	21	3.4	1.7	М	1	1		SAN JUANITO
							47 [40	7
							17	16	1
60-64	64	34	17.9	5.4	М	2	1		PAMPILLA
	64	35	16.0	5.5	M	2	1		PAMPILLA
	64	25	5.9	3.8	M	2	1		PAMPILLA
	60	25	9.3	2.6	н	3	•	1	PAMPILLA
	64	23	7.8	3.6	н	3		1	PAMPILLA
	60	25	7.0	3.5	M	2	1		PAMPILLA
	63	28	9.5	6.5	M	3	1		PAMPILLA
	60	22	5.4	2.1	н	2	•	1	PAMPILLA
	60	20	5.4	1.9	н	3		1	PAMPILLA
	60	22	4.8	2.1	н	3		1	PAMPILLA
	60	19	3.0	1.5	Н	2		1	PAMPILLA
	60					2	1	ı	PAMPILLA
	62	20	3.8 3.0	1.3	M H	3	1	1	PAMPILLA
	62	20 20	2.9	1.6 1.8	H M	2	1	ı	PAMPILLA
	60					2	1	4	PAMPILLA
		20	2.9	1.2	Н			1	
	60	17	3.2	1.9	н	1		1	PAMPILLA

ALTO HUN		1	2	М	2.6	7.4	25	62	
ALTO HUN	1	•	2	Н	2.9	5.8	21	60	
ALTO HUN	1		2	Н	2.8	5.5	22	60	
ALTO HUN	1		2	Н	3.0	5.8	20	60	
ALTO HUN	1		2	н	2.6	5.4	25	60	
ALTO HUN	1		2	Н	2.1	5.4	20	62	
ALTO HUN	•	1	2	М	2.4	5.8	22	60	
ALTO HUN	1	•	2	Н	2.6	5.1	22	60	
ALTO HUN	1		2	Н	2.5	5.1	23	60	
ALTO HUN		1	2	М	2.8	5.3	21	60	
ALTO HUN	1	•	2	Н	3.0	5.4	23	62	
ALTO HUN	1		3	Н	3.1	5.7	22	63	
ALTO HUN	•	1	3	М	1.8	3.8	20	62	
CATAPA	1		2	Н	2.9	6.0	26.0	65	
		1	2	M	2.7	5.6	26.0	64	
CATAPA	1	'	2	Н	2.5	4.7	25.0	62	
CATAPA	1		0	н	2.4	4.9	24.0	61	
CATAPA	ļ.	1	2	M	2.7	5.6	27.0	63	
CATAPA		1	2	M	2.7	5.0 5.9	27.0	64	
CATAPA	4	ı	2	M H	3.2	5.9	25.0	64	
CATAPA	1	4							
CATAPA HUAG		1	2	M	2.4	5.6	27.0	64	
HUAG		1		M	2.5	4.9	22	60	
	1		2	Н	2.6	4.8	22	60	
HUAYLLA		1	2	М	1.9	3.6	20	64	
PAMPIL	1		3	Н	3.8	7.6	28	68	65-69
PAMPIL		1	3	М	3.8	9.0	25	66	
PAMPIL		1	3	M	3.4	1.8	27	68	
PAMPIL		1	3	M	3.2	1.7	25	65	
PAMPIL		1	2	M	3.4	8.5	28	68	
PAMPIL	1		2	Н	2.6	5.3	28	66	
PAMPIL	1		3	Н	3.7	7.7	25	68	
PAMPIL	1		4	Н	4.2	8.8	25	65	
PAMPIL	1		4	Н	2.9	6.8	22	66	
PAMPIL		1	2	М	3.0	6.8	23	65	
PAMPIL	1		4	Н	4.0	6.8	23	65	
PAMPIL	1		2	Н	2.1	5.2	18	65	
ALTO HUN		1	2	М	3.8	10.8	26	68	
ALTO HUN		1	2	М	3.4	8.6	25	65	
ALTO HUN	1	•	2	Н	3.5	6.8	25	68	
ALTO HUN	1		2	н	3.3	6.6	25	65	
ALTO HUN	•	1	2	M	2.9	8.8	26	65	
ALTO HUN		1	2	M	2.0	3.8	21	67	
SOCS	1	1	2	Н	4.1	10.0	25	68	
SOCS	1		2	Н	4.1	8.2	25 25	68	
SOCS	1		2	Н	3.7	o.2 7.0	25 25	68	
SOCS									
CATAPA	1	4	2	H	3.1	5.8	23	65	
	4	1	2	М	3.6	5.0	30	69	
CATAPA	1		2	H	3.5	6.6	25	67	
CATAPA	1		2	Н	3.3	6.4	25	68	
HUAG	1		2	H	3.7	7.4	25	67	
HUAG	1		2	Н	3.2	6.5	25	67	
HUAG	1		2	Н	3.7	6.9	25	68	
HUAYLLA		1	2	М	2.3	4.2	22	68	
7	41	28							

1	70	07	40.0	0.5		•			DAMPILLA
70-74	72	27	13.6	2.5	M	3	1		PAMPILLA
	73	30	11.1	4.2	M	3	1		PAMPILLA PAMPILLA
	70	28	9.7	4.4	M	3	1		PAMPILLA
	74	28	9.9	5.1	М	3	1	4	PAMPILLA
	72	37	6.7	3.9	Н	3	4	1	PAMPILLA
	70	28	9.0	3.8	M	2	1		PAMPILLA
	70 71	28 28	9.4 14.1	3.5 3.8	M M	2	1 1		PAMPILLA
	70	28	1.8	3.6 4.1	M	2	1		PAMPILLA
	70	27	7.6	4.1	H	4	1	1	PAMPILLA
	70	30	11.3	2.0	M	3	1	'	PAMPILLA
	70	25	14.2	3.2	M	3	1		PAMPILLA
	70	28	8.5	3.0	M	2	1		PAMPILLA
	71	30	10.7	4.1	M	3	1		PAMPILLA
	72	28	1.4	4.3	M	2	1		ALTO HUNGARA
	73	27	9.5	4.8	н	2	·	1	SOCSI
	72	26	8.0	4.0	Н	2		1	SOCSI
	70	25	8.8	4.6	Н	2		1	SOCSI
	70	25	7.9	4.1	Н	2		1	SOCSI
	72	25	8.9	4.7	Н	2		1	SOCSI
	70	25	7.9	3.9	н	2		1	SOCSI
	70	25	7.9	4.2	Н	2		1	SOCSI
	70	31	8.6	6.6	М	2	1		CATAPALLA
	70	29	8.0	3.6	М	2	1		CATAPALLA
	74	28	9.6	4.8	М	2	1		HUAGIL
	74	30	8.9	4.5	М	2	1		HUAGIL
	73	28	8.9	4.8	Н	2		1	HUAGIL
	70	25	7.3	4.4	М	2	1		HUAGIL
	73	28	8.5	4.7	Н	2		1	HUAGIL
	70	28	8.6	4.1	М	2	1		HUAGIL
	70	27	7.7	4.1	Н	2		1	HUAGIL
	70	26	7.6	4.0	Н	2		1	HUAGIL
	70	25	7.3	4.1	Н	2		1	HUAGIL
	72	27	7.9	4.2	Н	2		1	HUAGIL
	70	25	7.3	4.0	Н	2		1	HUAGIL
	70	25	7.4	4.3	M	2	1		HUAGIL
	72	27	9.3	4.9	M	2	1		HUAYLLAMPI
	70	28	7.4	4.1	М	2	1		HUAYLLAMPI
75-79	77	33	9.8	4.8	н	3		1	PAMPILLA
15-15	78	35	13.2	5.2	н	2		1	PAMPILLA
	79	30	17.8	5.5	M	2	1		PAMPILLA
	75	30	12.7	4.8	M	3	1		PAMPILLA
	75	30	13.2	4.8	М	2	1		ALTO HUNGARA
	75	30	12.2	4.6	М	2	1		ALTO HUNGARA
	75	32	14.8	4.8	М	2	1		ALTO HUNGARA
	75	30	11.8	45.0	М	2	1		ALTO HUNGARA
	75	30	13.7	5.0	М	2	1		ALTO HUNGARA
	78	30	13.8	5.6	М	2	1		SOCSI
	78	30	12.9	5.8	Н	2		1	SOCSI
	75	27	12.0	6.2	Н	2		1	SOCSI
	75	30	11.2	5.8	Н	2		1	SOCSI
	78	30	12.5	6.5	Н	2		1	SOCSI
	75	26	10.7	5.5	Н	2		1	SOCSI
	76	31	9.6	4.5	Н	2		1	CATAPALLA
	78	32	10.5	4.8	М	2	1		CATAPALLA
	77	32	10.5	5.4	Н	2		1	CATAPALLA
	75	28	9.8	5.3	М	2	1		HUAYLLAMPI
									7
							32	25	_
1									

80-84	80	33	22.0	5.3	M	3	1		PAMPILLA
	80	34	13.0	4.4	М	3	1		PAMPILLA
	80	32	21.3	5.5	М	3	1		PAMPILLA
	80	32	15.4	6.2	Н	4		1	PAMPILLA
	80	33	20.5	6.3	M	2	1		ALTO HUNGAF
	84	33	18.8	6.4	М	2	1		ALTO HUNGAF
	80	34	13.3	5.7	M	2	1		ALTO HUNGAF
	80	32	14.1	5.7	M	2	1		ALTO HUNGAR
	80	34	15.2	6.1	M	2	1		ALTO HUNGA
	82	33	18.2	6.2	M	2	1		ALTO HUNGA
	82	30	16.7	6.3	M	2	1		ALTO HUNGA
	80	33	14.0	5.8	Н	2		1	ALTO HUNGA
	80	30	16.9	6.0	Н	2		1	ALTO HUNGA
	82	34	15.9	6.4	М	2	1		ALTO HUNGA
	80	30	13.9	7.0	Н	2		1	SOCSI
	82	32	14.8	7.2	Н	2		1	SOCSI
	82	32	18.6	6.5	M	2	1		SOCSI
	82	30	13.6	6.9	Н	2		1	SOCSI
	80	30	13.2	6.5	Н	2		1	SOCSI
	80	30	15.6	7.5	Н	2		1	SOCSI
	80	30	15.7	6.3	M	2	1		SOCSI
	80	33	10.7	5.3	M	2		1	CATAPALLA
	80	33	11.2	5.1	М	3	1		CATAPALLA
	83	35	11.5	5.7	М	2	1		CATAPALLA
	86	37	14.6	6.3	М	2	1		CATAPALLA
	83	36	14.9	5.9	М	2	1		CATAPALL
	81	35	12.9	4.9	М	2	1		HUAGIL
	80	33	14.2	6.2	М	2	1		HUAGIL
	80	31	13.2	6.5	Н	2		1	HUAYLLAMF
	80	32	12.9	6.6	Н	2		1	HUAYLLAMF
	80	30	12.9	6.8	Н	2		1	HUAYLLAMF
	80	34	15.0	7.5	Н	2		1	CHAVIN
	82	30	13.5	7.4	Н	2		1	CHAVIN
	80	30	13.6	7.2	Н	2		1	CAPILLUCA
85-89	85	35	19.1	5.3	М	3	1		PAMPILLA
00 00	85	35	21.6	6.7	M	3	1		PAMPILLA
	86	35	27.0	7.0	M	3	1		PAMPILLA
	85	35	19.3	6.0	M	3	1		PAMPILLA
	87	35	21.4	7.6	M	2	1		ALTO HUNGA
	88	35	19.0	7.4	M	2	1		ALTO HUNGA
	85	37	19.9	6.5	M	2	1		ALTO HUNGA
	87	35	19.3	7.0	M	2	1		ALTO HUNGA
	85	32	17.9	8.2	M	2	1		SOCSI
	85	30	14.8	7.9	Н	2		1	SOCSI
	85	30	14.7	7.9	Н	2		1	SOCSI
	85	32	16.2	8.2	Н	3		1	SOCSI
	85	32	14.0	7.3	Н	2		1	SOCSI
	89	38	15.3	7.3 7.4	П М	2	1	1	CATAPALLA
	69 86	30 37	14.6	6.3	M	2	1		CATAPALL
	88	37	14.4	6.9	M	2	1		CATAPALLA
	oo 87	37	16.8	7.2	M	2	1		CATAPALLA
						2	1		HUAYLLAMI
	86 85	34 34	17.9 16.8	8.2 7.9	M	2	1		HUAYLLAMF
	90	34 34	18.3	7.9 9.0	M H	2	ı	1	CAPILLUCA
	90	34	10.3	J.U	П	2		1	CAPILLUCA

90-94	90	38	21.8	8.5	M	2	1		ALTO HUNGARA
	94	40	21.0	7.7	M	3	1		ALTO HUNGARA
	92	38	23.2	8.0	M	2	1		ALTO HUNGARA
	90	35	21.3	8.4	M	2	1		ALTO HUNGARA
	90	37	19.3	7.8	М	2	1		ALTO HUNGARA
	90	40	25.1	8.0	М	2	1		SOCSI
	93	37	24.9	9.3	М	2	1		SOCSI
	92	40	25.5	8.5	M	2	1		SOCSI
	90	37	24.4	8.3	M	2	1		SOCSI
		37	28.0	9.4		2	1		SOCSI
	90				M		ı	4	SOCSI
	90	36	20.5	9.0	Н	2		1	
	90	32	17.4	8.5	Н	2		1	SOCSI
	93	40	19.7	8.2	М	3	1		CATAPALLA
	90	40	18.6	8.1	M	2	1		HUAGIL
	92	35	18.4	9.1	M	2	1		SAN JUANITO
	90	35	18.9	9.6	Н	2		1	HUAYLLAMPI
	92	37	18.5	10.0	M	2	1		HUAYLLAMPI
	93	35	20.8	10.4	Н	3		1	CHAVIN
	90	35	18.2	9.2	Н	2		1	CHAVIN
	93	35	19.4	9.2	Н	2		1	CHAVIN
	90	35	19.8	9.3	н	3		1	CHAVIN
	92	35	17.1	9.1	Н	2		1	CHAVIN
	02	00		0		-			
95-99	95	45	24.2	7.1	М	3	1		PAMPILLA
90-99									ALTO HUNGARA
	95	45	21.6	9.3	M	3	1		ALTO HUNGARA
	97	40	28.4	9.8	M	2	1		
	97	42	31.4	10.5	М	3	1		SOCSI
	96	38	30.7	10.0	M	2	1		SOCSI
	95	40	31.5	9.9	M	2	1		SOCSI
	97	40	29.7	9.0	M	3	1		SOCSI
	95	38	27.4	9.9	M	2	1		SOCSI
	95	37	27.3	9.5	M	2	1		SOCSI
	96	41	21.8	8.6	M	3	1		CATAPALLA
	98	42	26.0	10.1	M	2	1		HUAGIL
	98	40	23.2	10.3	М	2	1		HUAGIL
	97	38	24.8	11.4	М	2	1		HUAYLLAMPI
	III	38	24.3	11.2	Н	2		1	CHAVIN
	96	35	21.0	10.8	н	3		1	CHAVIN
	95	35	20.8	10.3	M	4	1	'	CHAVIN
	95	ან	20.0	10.3	IVI	4	ı		CHAVIN
							20	40	
							28	10	
100-104	100	40	32.6	10.4	М	3	1		ALTO HUNGARA
	100	44	28.3	10.7	M	2	1		ALTO HUNGARA
	100	42	32.3	11.0	M	2	1		SOCSI
	100	40	29.4	12.1	M	2	1		SOCSI
	100	40	28.2	11.0	M	2	1		SOCSI
	102	46	27.8	10.1	M	3	1		CATAPALLA
	104	47	25.1	11.2	M	3	1		CATAPALLA
	100	43	25.5	10.1	М	3	1		CATAPALLA
	100	42	29.7	11.2	M	2	1		HUAGIL
	100	40	24.0	11.8	M	2	1		HUAGIL
						2	1		HUAGIL
	102	40	29.5	12.5	M				HUAGIL
	103	43	27.9	11.1	M	2	1		
	100	41	26.9	10.4	М	2	1		HUAGIL
	100	40	22.7	11.0	Н	2		1	SAN JUANITO
	102	38	29.1	13.8	Н	2		1	HUAYLLAMPI
	100	42	35.0	16.2	Н	2		1	HUAYLLAMPI
	100	37	28.1	13.9	Н	2		1	HUAYLLAMPI

	100	38	24.9	11.7	Н	2		1	CHAVIN
	103	40	25.9	12.3	Н	4		1	CHAVIN
	103	40	25.5	12.3	Н	4		1	CHAVIN
	104	40	27.6	13.3	Н	3		1	CHAVIN
	104	38	29.0	13.5	Н	3		1	CHAVIN
	102	38	25.5	12.3	Н	3		1	CHAVIN
	100	37	25.8	13.2	Н	2		1	CHAVIN
	100	38	23.4	11.1	Н	3		1	CHAVIN
	100	37	22.4	11.6	Н	3		1	CHAVIN
	100	40	37.1	1101.0	М	3	1		CAPILLUCAS
	104	40	28.3	12.9	Н	3	•	1	CAPILLUCAS
	100	40	22.5	11.7	н	2		1	CAPILLUCAS
	101	40	24.8	12.1	н	2		1	CAPILLUCAS
	102	42	26.9	12.4	н	3		1	CAPILLUCAS
	102	42	20.9	12.4	п	3		'	OAI ILLOOAC
105-109	105	45	36.8	11.4	М	3	1		ALTO HUNGAF
	105	43	34.0	12.3	M	2	1		ALTO HUNGAF
	106	46	37.8	12.1	M	2	1		SOCSI
	106	45	27.2	11.8	M	3	1		CATAPALLA
	108	47	38.7	14.3	М	3	1		HUAGIL
	105	13	31.2	13.1	M	2	1		HUAGIL
	108	40	30.6	15.9	н	2	•	1	HUAYLLAMP
	106	45	42.7	18.2	н	3		1	HUAYLLAMP
	105	40	32.3	15.4	н	2		1	HUAYLLAMP
	105	42	32.3	16.0	н	4		1	CHAVIN
	103	43	34.6	14.4	Н	2		1	CAPILLUCAS
							20	22	I
							'		
110-114	110	45	49.0	14.4	М	3	1		ALTO HUNGAF
	110	47	56.2	13.7	М	3	1		SOCSI
	110	46	46.1	15.3	M	3	1		SOCSI
	110	48	45.9	14.2	М	3	1		SOCSI
	110	45	46.6	14.3	M	3	1		SOCSI
	110	49	36.3	11.8	M	3	1		CATAPALLA
	114	52	39.0	15.4	M	3	1		CATAPALLA
	112	45	38.5	16.4	Н	3		1	CHAVIN
	110	43	33.5	17.7	Н	4		1	CHAVIN
	110	40	35.4	17.2	Н	3		1	CHAVIN
	110	43	32.5	16.0	Н	3		1	CAPILLUCAS
	110	44	30.2	13.9	Н	3		1	CAPILLUCAS
115-119	115	48	53.3	16.6	М	3	1		SOCSI
. 10 110	115	47	51.3	15.1	M	3	1		SOCSI
	118	50	50.3	17.5	M	3	1		HUAGIL
	117	43	44.8	17.5	Н	3	ı	1	HUAYLLAMP
	117	43 47	44.6 45.3	18.6	Н	3		1	CHAVIN
					Н	2		1	CHAVIN
	115	45 45	36.5	17.7					
	115	45	40.4	18.3	Н	3		1	CHAVIN
	115	46	37.4	17.4	Н	2		1	CHAVIN
		45	42.4	31.3	Н	4		1	CHAVIN
	117			44.					
	117 116	74	56.8	18.4	М	3	1		CAPILLUCAS
			56.8	18.4	М	3	1 11	11	CAPILLUCAS